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In northern forests, where the sun is
relatively low in the sky, trees tend to be tall
and narrow to maximize their exposure to the
available light. In contrast, in equatorial
regions trees tend to have broad flat tops
because the sun is mostly overhead during
the day. Optimization is an important
characteristic of natural systems, as well as a
key factor in decision-making processes in
applied problem solving. In this chapter, we
will use the derivative to analyze functions
and find optimal solutions in a variety of
applied settings.

4 APPLICATIONS OF THE
DERIVATIVE

T his chapter puts the derivative to work. The first and second derivatives are used to
analyze functions and their graphs and to solve optimization problems (finding mini-

mum and maximum values of a function). Newton’s Method in Section 4.8 employs the
derivative to approximate solutions of equations.

4.1 Linear Approximation and Applications

In this section, we introduce the process of linear approximation that uses the tangent
line to the graph of a function f at x = a to approximate f (x) for x near a. These ap-
proximation methods are desirable because linear functions are usually easier to use and
compute with than nonlinear ones. We introduce a few different formulas involving lin-

x

y

y  =  f (x)

Tangent
line

FIGURE 1 The tangent line approximates
the graph of f near the point of tangency.

ear approximation. There are different settings and situations where each is useful. Keep
in mind that they all come from the same basic idea that the tangent line approximates
the function close to the point of tangency (Figure 1).

Linear Approximation
In some situations, we are interested in the effect of a small change. For example,

• How does a small change in angle affect the distance of a basketball shot?
(Exercise 47)

• How are revenues at the box office affected by a small change in ticket prices?
(Exercise 37)

• The cube root of 27 is 3. How much greater is the cube root of 27.2? (Exercise 7)

In each case, we have a function f and we’re interested in the change

� f = f (a +�x) − f (a)

where �x is small. The Linear Approximation uses the slope of the tangent line (i.e.,
the derivative) to estimate� f without computing it exactly. By definition, the derivative
is the limit

f ′(a) = lim
�x→0

f (a +�x) − f (a)

�x
= lim
�x→0

� f

�x

So when �x is small, we have � f/�x ≈ f ′(a), and thus,

REMINDER The notation ≈ means
“approximately equal to.” The accuracy of
the Linear Approximation is discussed at
the end of this section.

� f ≈ f ′(a)�x

Linear Approximation of � f If f is differentiable at x = a and �x is small, then

� f ≈ f ′(a)�x 1

It is important to understand the different roles played by � f and f ′(a)�x . The
quantity of interest is the actual change � f . We estimate it by f ′(a)�x , the change on
the tangent line with slope f ′(a). The Linear Approximation tells us that up to a small
error, � f is approximately equal to f ′(a)�x when �x is small.
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212 C H A P T E R 4 APPL ICAT IONS OF THE DER IVAT IVE

GRAPHICAL INSIGHT As we indicated, the Linear Approximation is an approximation
using a tangent line. In fact, it is sometimes called the tangent line approxima-
tion. Observe in Figure 2 that � f is the vertical change in the graph from x = a to
x = a +�x . For a line, the vertical change is equal to the slope times the horizontal
change �x , and since the tangent line has slope f ′(a), its vertical change is f ′(a)�x .
So the Linear Approximation approximates � f by the vertical change in the tangent
line. When �x is small, the two quantities are nearly equal.

x

y

a

f (a)

�f  = change in y along
        the graph of f

f ´(a)�x = change in y along
                 the tangent line

Tangent line at (a,  f (a))

y = f (x)

f (a + �x)

a + �x

�x

FIGURE 2 Graphical meaning of the Linear
Approximation � f ≈ f ′(a)�x .

EXAMPLE 1 Use the Linear Approximation to estimate the change in f (x) = 1/x as x
goes from 10 to 10.2; that is, to estimate 1

10.2 − 1
10 . How accurate is the estimate?

Solution We apply the Linear Approximation to f (x) = 1
x with a = 10 and �x = 0.2:

We have f ′(x) = −x−2 and f ′(10) = −0.01, so � f is approximated by

� f ≈ f ′(10)�x = (−0.01)(0.2) = −0.002

Since � f = 1
10.2 − 1

10 we have the approximation

1

10.2
− 1

10
≈ −0.002

A calculator gives the value 1
10.2 − 1

10 ≈ −0.00196, and thus, our error is lessThe error in the Linear Approximation is
the quantity

error = ∣
∣� f − f ′(a)�x

∣
∣

than 10−4:

error ≈ ∣
∣−0.00196 − (−0.002)

∣
∣ = 0.00004 < 10−4

EXAMPLE 2 Approximate how much greater 3
√

8.1 is than 3
√

8 = 2, and then use the
result to approximate 3

√
8.1.

Solution We are interested in 3
√

8.1 − 3
√

8, so we apply the Linear Approximation to
f (x) = x1/3 with a = 8 and �x = 0.1. We have

f ′(x) = 1

3
x−2/3 and f ′(8) =

(
1

3

)

8−2/3 =
(

1

3

) (
1

4

)

= 1

12

Therefore, � f ≈ f ′(8)�x = 1
12 (0.1) ≈ 0.0083, and since

� f = f (a +�x) − f (a) = 3
√

8 + 0.1 − 3
√

8 = 3
√

8.1 − 2

we have the approximation

3
√

8.1 − 2 ≈ 0.0083

Thus, 3
√

8.1 is greater than 3
√

8 by approximately 0.0083. It follows that

3
√

8.1 ≈ 2 + 0.0083 = 2.0083
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S E C T I O N 4.1 Linear Approximation and Applications 213

Suppose that we measure the diameter D of a circle and use this result to compute
the area of the circle. If our measurement of D is inexact, the area computation will also
be inexact. What is the effect of the measurement error on the resulting area computation?
This can be estimated using the Linear Approximation, as in the next example.

EXAMPLE 3 Effect of an Inexact Measurement The Cheezy Pizza Parlor claims that
its pizzas are circular with diameter 50 cm (Figure 3).

50 cm
Width 0.6 cm

FIGURE 3 The border of the actual pizza
lies between the dashed circles.

(a) What is the area of the pizza?

(b) Estimate the quantity of pizza lost or gained if the diameter is off by at most 1.2 cm.

Solution First, we need a formula for the area A of a circle in terms of its diameter D.
Since the radius is r = D/2, the area is

A(D) = π r2 = π

(
D

2

)2

= π

4
D2

(a) If D = 50 cm, then the pizza has area A(50) = (
π
4

)

(50)2 ≈ 1963.5 cm2.

(b) If the actual diameter is equal to 50 +�D, then the loss or gain in pizza area is
In this example, we interpret �A as the
possible error in the computation of A(D).
This should not be confused with the error
in the Linear Approximation. This latter
error refers to the accuracy in using
A′(D)�D to approximate �A.

A(50 +�D) − A(50) = �A. We apply Linear Approximation to A(D) with D = 50
and�D = ±1.2. Observe that A′(D) = π

2 D and A′(50) = 25π ≈ 78.5 cm, so the Linear
Approximation yields

�A ≈ A′(D)�D ≈ (78.5)�D

Because �D is at most ±1.2 cm, the loss or gain in pizza is no more than around

�A ≈ ±(78.5)(1.2) ≈ ±94.2 cm2

This is a loss or gain of approximately 4.8% of the area of 1963.5 cm2.

Linearization
To approximate the function f itself rather than the change� f , we use the linearization
L(x) centered at x = a, defined by

L(x) = f ′(a)(x − a) + f (a)

Notice that y = L(x) is the equation of the tangent line at x = a. For values of x close to
a, L(x) provides a good approximation to f (x) (Figure 4).

x

y

a

f (a)

Tangent line
L(x) = f (a) 1 f ´(a)(x 2 a)

y = f (x)

f (x)

L(x)

x

FIGURE 4 For x near a, the function value
f (x) is approximated by the tangent line
value L(x).

Approximating f by Its Linearization If f is differentiable at a and x is close to a,
then f (x) ≈ L(x), so

f (x) ≈ f (a) + f ′(a)(x − a)
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214 C H A P T E R 4 APPL ICAT IONS OF THE DER IVAT IVE

Note that, by rearranging the terms in linearization formula, we obtain the Linear Ap-
proximation formula, � f ≈ f ′(a)�x , that we introduced previously. Specifically, with
�x = x − a and � f = f (x) − f (a), we have

f (x) ≈ f (a) + f ′(a)(x − a)

f (x) − f (a) ≈ f ′(a)�x (since �x = x − a)

� f ≈ f ′(a)�x

EXAMPLE 4 Determine the approximation formula for f (x) = √
xex−1 resulting from

the linearization at a = 1.

Solution The linearization at a = 1 is the approximation formula that is given by f (x) ≈
f (1) + f ′(1)(x − 1). Note that f (1) = √

1e1−1 = 1. Then, using the Product Rule to
compute the derivative, we obtain

f ′(x) = 1

2
x−1/2ex−1 + x1/2ex−1 =

(
1

2
x−1/2 + x1/2

)

ex−1

and therefore, f ′(1) =
(

1
2 + 1

)

e0 = 3
2 . Thus,

f (1) + f ′(1)(x − 1) = 1 + 3

2
(x − 1) = 3

2
x − 1

2

This yields the approximation formula, valid for x close to 1:

√
xex−1 ≈ 3

2
x − 1

2

The following table compares values of the linearization to values obtained from a
calculator for the function f (x) = √

xex−1 in the previous example. Note that the error
is large for x = 2.5, as expected, because 2.5 is not close to the center of the linearization
a = 1 (Figure 5).

x
√

xex−1 Linearization 3
2 x − 1

2 Calculator Error

1.1
√

1.1e0.1 3
2 (1.1) − 1

2 = 1.15 1.15911 10−2

0.999
√

0.999e−0.001 3
2 (0.999) − 1

2 = 0.9985 0.998501 10−6

2.5
√

2.5e1.5 3
2 (2.5) − 1

2 = 3.25 7.086 3.84

x

y

2

4

6

8

10

12

f (x) =   xex−1

L(x) = x −

1 2 32.5

Error is large
for x = 2.5

3
2

1
2

FIGURE 5 Graph of f (x) = √
xex−1 and

its linearization at a = 1.

In the next example, we compute the percentage error, which is often more impor-
tant than the error itself because it gives us a measure of how large the error is in relation
to the actual value. An error of 0.1 is more significant when the actual value is 3 than
when the actual value is 333. By definition,

percentage error =
∣
∣
∣
∣

error

actual value

∣
∣
∣
∣
× 100%

EXAMPLE 5 Estimate tan
(
π
4 + 0.02

)

and compute the percentage error.

Solution We use the linearization of f (x) = tan x at a = π
4 for our approximation. So

we need to calculate the terms in f (π/4) + f ′(π/4)(x − π/4):

f
(π

4

)

= tan
(π

4

)

= 1, f ′
(π

4

)

= sec2
(π

4

)

= (√
2
)2 = 2

f
(π

4

)

+ f ′
(π

4

) (

x − π

4

)

= 1 + 2
(

x − π

4

)
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So, for x near π/4, we have the approximation formula

tan(x) ≈ 1 + 2
(

x − π

4

)

At x = π
4 + 0.02, this approximation yields the estimate

tan
(π

4
+ 0.02

)

≈ 1 + 2
(π

4
+ 0.02 − π

4

)

= 1.04

A calculator gives tan
(
π
4 + 0.02

) ≈ 1.0408, so

percentage error ≈
∣
∣
∣
∣

1.0408 − 1.04

1.0408

∣
∣
∣
∣
× 100 ≈ 0.08%

Differential Form of Linear Approximation
Another way of expressing the Linear Approximation is via the differentials dx and dy
that represent the change in x and y, respectively, on the tangent line to f (x) at x = a.
Since these differentials represent change on the tangent line, we have

dy = f ′(a)dx 2

As before, we let �y represent the change in y on the graph of f . It follows—as in the
previous approximations in this section—that with a small change in x , the change in
y on the graph is approximately the change in y on the tangent line (Figure 6). Thus,
�y ≈ dy, yielding the following:

Differential Form of Linear Approximation If f is differentiable at a and dx is small,
then

�y ≈ dy = f ′(a)dx 3

As we mentioned before, in the Leibniz
notation for the derivative, dy

dx does not
represent a fraction. It is via differentials,
though, that the relationship dy = dy

dx dx is
made mathematically meaningful. We will
find relationships like this to be very useful
when simplifying computations involving
integrals in subsequent chapters.

x

y

a

f (a)

�y
dy = f ´(a)dx

Tangent line

y = f (x)

f (a + dx)

a + dx

dx

FIGURE 6 The approximation
�y ≈ dy = f ′(a)dx .

CONCEPTUAL INSIGHT At the start of the section, we observed that all of the approx-
imation relationships presented here are based on the idea that the tangent line is a
good approximation to the graph of the function near the point of tangency. The Linear
Approximation, the linearization, and the Differential Form of Linear Approximation
are illustrated in Figures 2, 4, and 6, respectively. Note that these figures all depict
the graph of f and the tangent line at x = a. From figure to figure, various features
are described or labeled differently in order to illustrate the important aspects of each
approximation relationship.

You might wonder why we bother with the Differential Form of Linear Approxima-
tion. At this point, it just appears to be another way of expressing a relationship that we
already had a perfectly good way of expressing. The intent here is to provide an initial
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glimpse into a tool, the differential, that is employed often by mathematicians, scientists,
and engineers to express or approximate a small change involving related variables. A
differential corresponds to the change on the tangent line (as we see here), on the tangent
plane (see Section 14.4), or in the tangent space (in higher dimensions). Differentials
provide a straightforward linear means for approximating and working with complicated
relationships.

EXAMPLE 6 Thermal Expansion Changes in temperature can have subtle effects on
physical properties of objects that we might think normally are constant. A thin metal
cable has length L = 12 cm when the temperature is T = 21◦C. Estimate the change in
length when T rises to 24◦C, assuming that

d L

dT
= kL 4

where k = 1.7 × 10−5◦C−1 (k is called the coefficient of thermal expansion).

Solution How does the Linear Approximation apply here? We will use the differential
d L to estimate the actual change in length �L when T increases from 21◦C to 24◦C—
that is, when dT = �T = 3◦C. By Eq. (2), the differential d L is

d L =
(

d L

dT

)

dT

By Eq. (4), since L = 12,

d L

dT

∣
∣
∣
L=12

= kL = (1.7 × 10−5)(12) ≈ 2 × 10−4 cm/◦C

Therefore, with dT = 3, we have

d L =
(

d L

dT

)

dT ≈ (2 × 10−4)(3) = 6 × 10−4 cm

Thus, �L ≈ d L tells us that when the temperature increases from 21◦C to 24◦C, we can
expect the cable to lengthen by approximately 0.0006 cm.

The Size of the Error
The examples in this section may have convinced you that the Linear Approximation
yields a good approximation to � f when �x is small, but if we want to rely on the
Linear Approximation, we need to know more about the size of the error:

E = error = ∣
∣� f − f ′(a)�x

∣
∣

Graphically the error E is the vertical gap between the graph of f and the tangent line
(Figure 7). In Section 10.7, we will prove the following Error Bound:

x

y

a

f (a)

Error

f (a 1   x)

a 1

   x

   x

f '(a)   x

FIGURE 7 Graphical interpretation of the
error in the Linear Approximation.

E ≤ 1

2
K (�x)2 5

where K is the maximum value of | f ′′(x)| on the interval from a to a +�x .
The Error Bound tells us two important things. First, it says that the error is small

when the second derivative (and hence K ) is small. This makes sense, because f ′′(x)
measures how quickly the tangent lines change direction. When | f ′′(x)| is smaller, the
graph is flatter and the Linear Approximation is more accurate over a larger interval
around x = a (compare the graphs in Figure 8).
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(A) Graph flat, f" (x) is small.

Small error in the

Linear Approximation

(B) Graph bends a lot, f" (x) is large.

(a, f (a)) (a, f (a))

Large error in the

Linear Approximation

FIGURE 8 The accuracy of the Linear
Approximation depends on how much
the curve bends.

Second, the Error Bound tells us that the error is of order 2 in �x , meaning that
E is no larger than a constant times (�x)2. So if �x is small, say, �x = 10−n , then
E has a substantially smaller order of magnitude, since (�x)2 = 10−2n . In particular,
E/�x tends to zero (because E/�x < K�x), so the Error Bound tells us that the graph
becomes nearly indistinguishable from its tangent line as we zoom in on the graph around
x = a. This is a precise version of the “local linearity” property discussed in Section 3.2.

4.1 SUMMARY

The approximation formulas in this section are all based on the idea that the tangent line
to the graph of a function f at x = a can be used to approximate f (x) for x near a.

• Let � f = f (a +�x) − f (a). The Linear Approximation is the estimate

� f ≈ f ′(a)�x (for �x small)

• The linearization of f (x) centered at x = a is the function for the tangent line

L(x) = f (a) + f ′(a)(x − a)

• The approximation based on linearization is

f (x) ≈ f (a) + f ′(a)(x − a) (for x close to a)

• Differential notation: dx = �x is the change in x , dy = f ′(a)dx is the change on the
tangent line, and �y = f (a +�x) − f (a) is the change in f . In this notation, the
Differential Form of Linear Approximation is

�y ≈ dy = f ′(a)dx (for dx small)

• The error in the Linear Approximation is the quantity

error =
∣
∣
∣� f − f ′(a)�x

∣
∣
∣

The percentage error is often more significant because it is a measure of how large the
error is in relation to the actual value:

percentage error =
∣
∣
∣

error

actual value

∣
∣
∣ × 100%

• The error E in the Linear Approximation is bounded as follows:

E ≤ 1

2
K (�x)2

where K is the maximum value of | f ′′(x)| on the interval from a to a +�x .
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4.1 EXERCISES

Preliminary Questions
1. True or False? The Linear Approximation says that the vertical change
in the graph is approximately equal to the vertical change in the tangent
line.

2. Estimate g(1.2) − g(1) if g′(1) = 4.

3. Estimate f (2.1) if f (2) = 1 and f ′(2) = 3.

4. Complete the following sentence: The Linear Approximation shows
that up to a small error, the change in output � f is directly proportional
to ______________ .

Exercises
In Exercises 1–6, use Eq. (1) to estimate � f = f (3.02) − f (3).

1. f (x) = x2 2. f (x) = x4

3. f (x) = x−1 4. f (x) = 1

x + 1

5. f (x) = √
x + 6 6. f (x) = tan

πx

3

7. The cube root of 27 is 3. How much larger is the cube root of 27.2?
Estimate using the Linear Approximation.

8. The cube root of 64 is 4. How much smaller is the cube root of 63.6?
Estimate using the Linear Approximation.

In Exercises 9–12, use Eq. (1) to estimate� f . Use a calculator to compute
both the error and the percentage error.

9. f (x) = √
1 + x , a = 3, �x = 0.2

10. f (x) = 2x2 − x , a = 5, �x = −0.4

11. f (x) = 1

1 + x2
, a = 3, �x = 0.5

12. f (x) = ln(x2 + 1), a = 1, �x = 0.1

In Exercises 13–20, using Linear Approximation, estimate � f for a
change in x from x = a to x = b. Use the estimate to approximate f (b),
and find the error using a calculator.

13. f (x) = √
x , a = 25, b = 26 14. f (x) = x1/4, a = 16, b = 16.5

15. f (x) = 1√
x
, a = 100, b = 101 16. f (x) = 1√

x
, a = 100, b = 98

17. f (x) = x1/3, a = 8, b = 9 18. f (x) = tan−1 x , a = 1, b = 1.05

19. f (x) = ex , a = 0, b = −0.1 20. f (x) = ln x , a = 1, b = 0.97

In Exercises 21–28, find the linearization at x = a and then use it to
approximate f (b).

21. f (x) = x4, a = 1, b = 0.96

22. f (x) = 1

x
, a = 2, b = 2.02

23. f (x) = sin2 x , a = π
4 , b = 1.1π

4

24. f (x) = x2

x − 3
, a = 4, b = 4.1

25. f (x) = (1 + x)−1/2, a = 0, b = 0.08

26. f (x) = (1 + x)−1/2, a = 3, b = 2.88

27. f (x) = e
√

x , a = 1, b = 0.85

28. f (x) = ex ln x , a = 1, b = 1.02

In Exercises 29–32, estimate �y using differentials [Eq. (3)].

29. y = cos x , a = π
6 , dx = 0.014

30. y = tan2 x , a = π
4 , dx = −0.02

31. y = 10 − x2

2 + x2
, a = 1, dx = 0.01

32. y = x1/3ex−1, a = 1, dx = 0.1

33. Estimate f (4.03) for f (x) as in Figure 9.

x

y

(4, 2)

(10, 4)
y 5 f (x)

Tangent line

FIGURE 9

34. At a certain moment, an object in linear motion has velocity
100 m/s. Estimate the distance traveled over the next quarter-second, and
explain how this is an application of the Linear Approximation.

35. Which is larger:
√

2.1 − √
2 or

√
9.1 − √

9? Explain using the Linear
Approximation.

36. Estimate sin 61◦ − sin 60◦ using the Linear Approximation. Hint:
Express �θ in radians.

37. Box office revenue at a cinema in Paris is R(p) = 3600p − 10p3 eu-
ros per showing when the ticket price is p euros. Calculate R(p) for p = 9
and use the Linear Approximation to estimate�R if p is raised or lowered
by 0.5 euro.

38. The stopping distance for an automobile is F(s) = 1.1s + 0.054s2 ft,
where s is the speed in mph. Use the Linear Approximation to estimate
the change in stopping distance per additional mph when s = 35 and when
s = 55.

39. A thin silver wire has length L = 18 cm when the temperature is
T = 30◦C. Estimate �L when T decreases to 25◦C if the coefficient of
thermal expansion is k = 1.9 × 10−5◦C−1 (see Example 6).

40. At a certain moment, the temperature in a snake cage satisfies
dT/dt = 0.008◦C/s. Estimate the rise in temperature over the next 10 s.

41. The atmospheric pressure at altitude h (kilometers) for 11 ≤ h ≤ 25
is approximately

P(h) = 128e−0.157h kilopascals

(a) Estimate �P at h = 20 when �h = 0.5.

(b) Compute the actual change, and compute the percentage error in the
Linear Approximation.
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42. The resistance R of a copper wire at temperature T = 20◦C is
R = 15 �. Estimate the resistance at T = 22◦C, assuming that
d R/dT

∣
∣
T =20 = 0.06 �/◦C.

43. Newton’s Law of Gravitation shows that if a person weighs w pounds
on the surface of the earth, then his or her weight at distance x from the
center of the earth is

W (x) = wR2

x2
(for x ≥ R)

where R = 3960 miles is the radius of the earth (Figure 10).
(a) Show that the weight lost at altitude h miles above the earth’s surface
is approximately �W ≈ −(0.0005w)h. Hint: Use the Linear Approxima-
tion with dx = h.
(b) Estimate the weight lost by a 200-lb football player flying in a jet at
an altitude of 7 miles.

3960

h

FIGURE 10 The distance to the center of the earth is 3960 + h miles.

44. Using Exercise 43(a), estimate the altitude at which a 130-lb pilot
would weigh 129.5 lb.

45. A stone tossed vertically into the air with initial velocity v cm/s
reaches a maximum height of h = v2/1960 cm.
(a) Estimate �h if v = 700 cm/s and �v = 1 cm/s.
(b) Estimate �h if v = 1000 cm/s and �v = 1 cm/s.
(c) In general, does a 1-cm/s increase in v lead to a greater change in h at
low or high initial velocities? Explain.

46. The side s of a square carpet is measured at 6 m. Estimate the maxi-
mum error in the area A of the carpet if s is accurate to within 2 cm.

In Exercises 47 and 48, use the following fact derived from Newton’s Laws:
An object released at an angle θ with initial velocity v ft/s travels a hori-
zontal distance

s = 1

32
v2 sin 2θ ft (Figure 11)

47. A player located 18.1 ft from the basket launches a successful jump
shot from a height of 10 ft (level with the rim of the basket), at an angle
θ = 34◦ and initial velocity v = 25 ft/s.
(a) Show that �s ≈ 0.255�θ ft for a small change of �θ .
(b) Is it likely that the shot would have been successful if the angle had
been off by 2◦?
(c) Estimate �s if θ = 34◦, v = 25 ft/s, and �v = 2.

x
s

y

FIGURE 11 Trajectory of an object released at an angle θ .

48. A golfer hits a golf ball at an angle of θ = 23◦ with initial velocity
v = 120 ft/s.

(a) Estimate �s if the ball is hit at the same velocity but the angle is
increased by 3◦.
(b) Estimate �s if the ball is hit at the same angle but the velocity is
increased by 3 ft/s.

49. The radius of a spherical ball is measured at r = 25 cm. Estimate the
maximum error in the volume and surface area if r is accurate to within
0.5 cm.

50. The dosage D of diphenhydramine for a dog of body mass w kg
is D = 4.7w2/3 mg. Estimate the maximum allowable error in w for a
cocker spaniel of mass w = 10 kg if the percentage error in D must be less
than 3%.

51. The volume (in liters) and pressure P (in atmospheres) of a cer-
tain gas satisfy PV = 24. A measurement yields V = 4 with a possible
error of ±0.3 L. Compute P and estimate the maximum error in this
computation.

52. In the notation of Exercise 51, assume that a measurement yields
V = 4. Estimate the maximum allowable error in V if P must have an
error of less than 0.2 atm.

53. Approximate f (2) if the linearization of f (x) at a = 2 is L(x) =
2x + 4.

54. Compute the linearization of f (x) = 3x − 4 at a = 0 and a = 2.
Prove more generally that a linear function coincides with its linearization
at x = a for all a.

55. Estimate
√

16.2 using the linearization L(x) of f (x) = √
x at a = 16.

Plot f and L on the same set of axes and from the plot indicate whether
the estimate is greater than or less than the actual value.

56. GU Estimate 1/
√

15 using a suitable linearization of f (x) =
1/

√
x . Plot f and L on the same set of axes and from the plot indicate

whether the estimate is greater than or less than the actual value. Use a
calculator to compute the percentage error.

In Exercises 57–65, approximate using linearization and use a calculator
to compute the percentage error.

57.
1√
17

58.
1

101

59.
1

(10.03)2
60. (17)1/4

61. (64.1)1/3 62. (1.2)5/3

63. cos−1(0.52) 64. ln 1.07

65. e−0.012

66. GU Compute the linearization L(x) of f (x) = x2 − x3/2 at a = 4.
Then plot f − L and identify an interval I around a = 4 such that
| f (x) − L(x)| ≤ 0.1 for x ∈ I .

67. Show that the Linear Approximation to f (x) = √
x at x = 9 yields

the estimate
√

9 + h − 3 ≈ 1
6 h. Set K = 0.01 and show that | f ′′(x)| ≤ K

for x ≥ 9. Then verify numerically that the error E satisfies Eq. (5) for
h = 10−n , for 1 ≤ n ≤ 4.

68. GU The Linear Approximation to f (x) = tan x at x = π
4 yields the

estimate tan
(
π
4 + h

) − 1 ≈ 2h. Set K = 6.2 and show, using a plot, that
| f ′′(x)| ≤ K for x ∈ [ π4 , π4 + 0.1]. Then verify numerically that the error
E satisfies Eq. (5) for h = 10−n , for 1 ≤ n ≤ 4.
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Further Insights and Challenges
69. Compute dy/dx at the point P = (2, 1) on the curve y3 + 3xy = 7
and show that the linearization at P is L(x) = − 1

3 x + 5
3 . Use L(x) to esti-

mate the y-coordinate of the point on the curve where x = 2.1.

70. Apply the method of Exercise 69 to P = (0.5, 1) on y5 + y − 2x = 1
to estimate the y-coordinate of the point on the curve where x = 0.55.

71. Apply the method of Exercise 69 to P = (−1, 2) on y4 + 7xy = 2 to
estimate the solution of y4 − 7.7y = 2 near y = 2.

72. Show that for any real number k, (1 +�x)k ≈ 1 + k�x for small�x .
Estimate (1.02)0.7 and (1.02)−0.3.

73. Let � f = f (5 + h) − f (5), where f (x) = x2. Verify directly that
E = |� f − f ′(5)h| satisfies (5) with K = 2.

74. Let � f = f (1 + h) − f (1), where f (x) = x−1. Show directly that
E = |� f − f ′(1)h| is equal to h2/(1 + h). Then prove that E ≤ 2h2 if

− 1
2 ≤ h ≤ 1

2 . Hint: In this case, 1
2 ≤ 1 + h ≤ 3

2 .

4.2 Extreme Values

In many applications, it is important to find the minimum or maximum value of a func-
tion f . For example, a physician needs to know the maximum drug concentration in a

Maximum

concentration

108642

C(t) mg/mL

0.002

0.001

t (h)

FIGURE 1 Drug concentration in
bloodstream (see Exercise 78).

patient’s bloodstream when a drug is administered. This amounts to finding the highest
point on the graph of C , the concentration at time t (Figure 1).

We refer to the maximum and minimum values (max and min for short) as extreme
values or extrema (singular: extremum) and to the process of finding them as optimiza-
tion. Sometimes, we are interested in finding the min or max for x in a particular interval
I , rather than on the entire domain of f .

Often, we drop the word “absolute” and
speak simply of the min or max on an
interval I. When no interval is mentioned, it
is understood that we refer to the extreme
values on the entire domain of the
function.

DEFINITION Extreme Values on an Interval Let f be a function on an interval I
and let a ∈ I . We say that f (a) is the

• Absolute minimum of f on I if f (a) ≤ f (x) for all x ∈ I .
• Absolute maximum of f on I if f (a) ≥ f (x) for all x ∈ I .

Does every function have a minimum or maximum value? Clearly not, as we see
by taking f (x) = x . Indeed, f (x) = x increases without bound as x → ∞ and decreases
without bound as x → −∞. In fact, extreme values do not always exist even if we restrict
ourselves to an interval I . Figure 2 illustrates what can go wrong if I is open or f has a
discontinuity.

• Discontinuity: (A) shows a discontinuous function with no maximum value. The
values of f (x) get arbitrarily close to 3 from below, but 3 is not the maximum
value because f (x) never actually takes on the value 3.

• Open interval: In (B), g(x) is defined on the open interval (a, b). It has no max
because it tends to ∞ on the right, and it has no min because it tends to 10 on the
left without ever reaching this value.

Fortunately, our next theorem guarantees that extreme values exist when the function is
continuous and I is closed [Figure 2(C)].

x xx

y y y

Every continuous function on a closed

interval [a, b] has both a min and a

max on [a, b].

(C)Continuous function

with no min or max on

the open interval (a, b).

(B)Discontinuous function

with no max on [a, b],

and a min at x 5 a.

(A)

y  5 g(x)

10

Max on [a, b]

Min on [a, b]
Min on [a, b]

y  5 h(x)

1

2

3
y  5 f (x)

a c b a b a b

FIGURE 2
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THEOREM 1 Existence of Extrema on a Closed Interval A continuous function f
on a closed (bounded) interval I = [a, b] takes on both a minimum and a maximum
value on I .

REMINDER A closed, bounded interval
is an interval I = [a, b] (endpoints
included), where a and b are both finite.
Often, we drop the word “bounded” and
refer to I more simply as a closed interval.
An open interval (a, b) (endpoints not
included) may have one or two infinite
endpoints.

CONCEPTUAL INSIGHT Why does Theorem 1 require a closed interval? Think of the
graph of a continuous function as a string. If the interval is closed, the string is pinned
down at the two endpoints and cannot fly off to infinity or approach a min/max
without reaching it as in Figure 2(B). Intuitively, therefore, it must have a highest
and lowest point. As with the Intermediate Value Theorem in Section 2.8, a rigor-
ous proof of Theorem 1 relies on the completeness property of the real numbers (see
Appendix B).

Local Extrema and Critical Points
We focus now on the problem of finding extreme values. A key concept is that of a local
minimum or maximum.

DEFINITION Local Extrema We say that f (c) is a

• Local minimum occurring at x = c if f (c) is the minimum value of f on some
open interval (in the domain of f ) containing c.

• Local maximum occurring at x = c if f (c) is the maximum value of f on some
open interval (in the domain of f ) containing c.

Jo
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Ja
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/G
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FIGURE 3 In the region surrounding Denali
in Alaska, there are many local maxima,
but there is one global maximum, the peak
of Denali.

A local max occurs at x = c if (c, f (c)) is the highest point on the graph within
some small box [Figure 4(A)]. Thus, f (c) is greater than or equal to all other nearby
values, but it does not have to be the absolute maximum value of f (Figure 3). Lo-
cal minima are similar. On the other hand, as Figure 4(B) illustrates, an absolute max-
imum of f on an interval [a, b] need not be a local maximum of f in open intervals
containing the point. In the figure, f (a) is the absolute max on [a, b] but is not a lo-
cal max on open intervals containing a because f (x) takes on greater values to the left
of x = a.

x

y

x

y

(A)

ca b

(B)

Local max

(c, f (c))

y 5 f (x)
Absolute max 

on [a, b]

c

Local

min and

abs. min

Local

min

Local

max

f (c)

f (a)

FIGURE 4

How do we find the local extrema? The crucial observation is that the tangent line
at a local min or max is horizontal [Figure 5(A)]. In other words, if f (c) is a local min
or max, then f ′(c) = 0. However, this assumes that f is differentiable. Otherwise, the
tangent line may not exist, as in Figure 5(B). To take both possibilities into account, we
define the notion of a critical point.
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Tangent line is horizontal

at the local extrema.  

(A) (B) This local minimum occurs at a point

where the function is not differentiable.

c
x

c
x

FIGURE 5

DEFINITION Critical Points A number c in the domain of f is called a critical point
if either f ′(c) = 0 or f ′(c) does not exist.

EXAMPLE 1 Find the critical points of f (x) = x3 − 9x2 + 24x − 10.
x

y

2 4

FIGURE 6 Graph of
f (x) = x3 − 9x2 + 24x − 10.

Solution The function f is differentiable everywhere (Figure 6). Therefore, the critical
points are the solutions of f ′(x) = 0:

f ′(x) = 3x2 − 18x + 24 = 3(x2 − 6x + 8) = 3(x − 2)(x − 4)

To find the critical points, we solve 3(x − 2)(x − 4) = 0. Thus, they are x = 2
and x = 4.

EXAMPLE 2 Nondifferentiable Function Find the critical points of f (x) = |x |.
Solution As we see in Figure 7, f ′(x) = −1 for x < 0 and f ′(x) = 1 for x > 0. There-

x

y

21

1

FIGURE 7 Graph of f (x) = |x |.

fore, f ′(x) = 0 has no solutions with x �= 0. However, f ′(0) does not exist. Thus, c = 0
is a critical point.

The next theorem tells us that we can find local extrema by solving for the critical
points. It is one of the most important results in calculus.

THEOREM 2 Fermat’s Theorem on Local Extrema If f (c) is a local min or max,
then c is a critical point of f .

Proof Suppose that f (c) is a local minimum (the case of a local maximum is similar).
If f ′(c) does not exist, then c is a critical point and there is nothing more to prove. So,
assume that f ′(c) exists. We must then prove that f ′(c) = 0.

Because f (c) is a local minimum, we have f (c + h) ≥ f (c) for all sufficiently small
h �= 0. Equivalently, f (c + h) − f (c) ≥ 0. Now divide this inequality by h. Two possi-
bilities occur depending on whether we are dividing by a positive value or a negative one:

f (c + h) − f (c)

h
≥ 0 if h > 0 1

f (c + h) − f (c)

h
≤ 0 if h < 0 2

Figure 8 shows the graphical interpretation of these inequalities. Taking the one-sided

c

Secant line has
positive slope

for h . 0

Secant line has
negative slope

for h , 0

c 2 h c 1 h
x

FIGURE 8

limits of both sides of (1) and (2), we obtain

f ′(c) = lim
h→0+

f (c + h) − f (c)

h
≥ lim

h→0+
0 = 0

f ′(c) = lim
h→0−

f (c + h) − f (c)

h
≤ lim

h→0−
0 = 0

Thus, f ′(c) ≥ 0 and f ′(c) ≤ 0. The only possibility is f ′(c) = 0 as claimed.
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CONCEPTUAL INSIGHT Theorem 2 indicates that a local max or min must be a critical
point . However, the “converse” need not be true. That is, having a critical point c does
not guarantee a local min or max occurs at c. For example, f (x) = x3 has derivative
f ′(x) = 3x2 and f ′(0) = 0. So, 0 is a critical point, but f (0) is neither a local min nor
max (Figure 9). The origin is a point of inflection (studied in Section 4.4), where the
tangent line crosses the graph.

Optimizing on a Closed Interval
Finally, we have all the tools needed for optimizing a continuous function on a closed

f (x) 5 x3
1

21

21
x

y

1

FIGURE 9 The tangent line at (0, 0) is
horizontal, but f (0) is not a local min or
max.

interval. Theorem 1 guarantees that the extreme values exist, and the next theorem tells
us where to find them, namely among the critical points or endpoints of the interval.

THEOREM 3 Extreme Values on a Closed Interval Assume that f is continuous on
[a, b] and let f (c) be the minimum or maximum value on [a, b]. Then c is either a
critical point or one of the endpoints a or b.

Proof If c is one of the endpoints a or b, there is nothing to prove. If not, then c belongs
to the open interval (a, b). In this case, f (c) is also a local min or max because it is the
min or max on (a, b). By Fermat’s Theorem, c is a critical point.

EXAMPLE 3 Find the extrema of f (x) = 2x3 − 15x2 + 24x + 7 on [0, 6].

Solution The extreme values occur at critical points or endpoints by Theorem 3, so we
can break up the problem neatly into two steps.

Step 1. Find the critical points.
The function f is differentiable, so the critical points are solutions to f ′(x) = 0.

f ′(x) = 6x2 − 30x + 24 = 6(x − 1)(x − 4)

The critical points satisfy 6(x − 1)(x − 4) = 0, and therefore are x = 1 and 4.

Step 2. Compare values of f (x) at the critical points and endpoints.

x-value Value of f (x)

1 (critical point) f (1) = 18
4 (critical point) f (4) = −9 min
0 (endpoint) f (0) = 7
6 (endpoint) f (6) = 43 max

The maximum value of f (x) on [0, 6] is the greatest of the values in this table, namely
f (6) = 43. Similarly, the minimum is f (4) = −9. See Figure 10.

x

y

20

40

1

4

Min

Max

6

FIGURE 10 Extreme values of
f (x) = 2x3 − 15x2 + 24x + 7 on [0, 6].

EXAMPLE 4 Function with a Cusp Find the extrema of f (x) = 1 − (x − 1)2/3 on
[−1, 2].

Solution First, find the critical points:

f ′(x) = −2

3
(x − 1)−1/3 = − 2

3(x − 1)1/3

The equation f ′(x) = 0 has no solutions because f ′(x) is never zero. However, f ′(x)

1 221

1

Min

Max

x

y

DF FIGURE 11 Extreme values of
f (x) = 1 − (x − 1)2/3 on [−1, 2]. does not exist at x = 1, so there is a critical point there (Figure 11).
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Next, compare values of f (x) at the critical points and endpoints:

x-value Value of f (x)

1 (critical point) f (1) = 1 max
−1 (endpoint) f (−1) ≈ −0.59 min
2 (endpoint) f (2) = 0

So on [−1, 2], the maximum of f is f (1) = 1 and the minimum is f (−1) ≈ −0.59.

EXAMPLE 5 Logarithmic Example Find the extreme values of the function f (x) =
x2 − 8 ln x on [1, 4].

x

y

(2, 21.55)

Min

2

21.5

4

6

1 2 3 4 5

Max

FIGURE 12 Extreme values of
f (x) = x2 − 8 ln x on [1, 4].

Solution First, we solve for the critical points. We have f ′(x) = 2x − 8/x , so we solve

2x − 8

x
= 0 ⇒ 2x = 8

x
⇒ x = ±2

The only critical point in the interval [1, 4] is x = 2. Next, compare the values of f (x) at
the critical points and endpoints (Figure 12):

x-value Value of f (x)

2 (critical point) f (2) ≈ −1.55 min
1 (endpoint) f (1) = 1
4 (endpoint) f (4) ≈ 4.9 max

We see that the minimum on [1, 4] is f (2) ≈ −1.55 and the maximum is f (4) ≈ 4.9.

EXAMPLE 6 An Open-Interval Example The function S(θ ) = 240 + 24
(√

3 − cos θ
sin θ

)

arises in a model—that we describe after this example—of the geometry of a honeycomb
cell. Figure 13 shows the graph of S for 0 < θ < π . As θ approaches 0 and π from inside

θ
π

S

500

250

0

FIGURE 13 Graph of S(θ ).

the interval, S(θ ) → ∞. Therefore, there is no absolute maximum of S on (0,π ), but the
graph suggests that there is an absolute minimum. Find it.

Solution Computing S′(θ ), we have

S′(θ ) = 24

(

(sin θ )(sin θ ) − (
√

3 − cos θ )(cos θ )

sin2 θ

)

= 24

(

1 − √
3 cos θ

sin2 θ

)

The derivative is defined for all θ in the interval and is zero where 1 − √
3 cos θ = 0.

Therefore the absolute minimum occurs at

θm = cos−1
(

1√
3

)

≈ 0.96 radians ≈ 54.7◦

Computing S(0.96), we find that the absolute minimum of S over (0,π ) is approximatelyUsing θm = cos−1
(

1√
3

)

, the minimum

value can be shown to be exactly
24(10 + √

2).

273.94.

Honeycomb Geometry The honeycomb of bees has long been of scientific and mathe-
matical interest (Figure 14). Some believe that, for a fixed cell volume, the specific shape
of the cell minimizes the cell’s surface area and thus the amount of wax needed to con-
struct it. Each cell has an open hexagonal top, six quadrilateral sides, and three rhombi
on the bottom. Imagine that (as in Figure 15) the sides on the hexagonal top are 4 mm,
three of the vertical sides are 10 mm, and the remaining dimensions can vary. Let θ be
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the angle between a vertical axis through the center of the cell and the bottom rhombi
faces. Via geometry, two important facts about the shapes in the figure can be shown:
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FIGURE 14 What is the ideal honeycomb
cell shape?

10

4

10

4

θ

10

4

θθ

FIGURE 15 The honeycomb cell geometry.

• The volume of the cell is independent of the angle θ .
• The surface area S of the cell (the total area of the six quadrilaterals and three
rhombii) depends on θ according to

S(θ ) = 240 + 24

(√
3 − cos θ

sin θ

)

The previous example indicates that for the cells we are considering, the minimum sur-
face area occurs at θ ≈ 54.7◦. How does this minimum compare with the actual cells that
the bees construct?

In the early eighteenth century, astronomer Giacomo Maraldi made extensive mea-
surements of bees’ honeycomb and observed typical angle measurements consistent with
the optimal angle we found. Subsequently, mathematicians Samuel Koenig and Colin
Maclaurin performed a calculus-based analysis of the honeycomb geometry (as we have
done here) supporting the idea that the bees are economical in their honeycomb construc-
tion. The question of why bees construct the honeycomb as they do is still unsettled, but
calculus provides an interesting glimpse at the possibilities.

Rolle’s Theorem
As an application of our optimization methods, we prove Rolle’s Theorem: If f is dif-
ferentiable and takes on the same value at two different points a and b, then somewhere
between these two points the derivative is zero. Graphically, if the secant line between
x = a and x = b is horizontal, then at least one tangent line between a and b is also
horizontal (Figure 16).

x

y

a bc

f (a) 5 f (b)

f '(c) 5 0

FIGURE 16 Rolle’s Theorem: If
f (a) = f (b), then f ′(c) = 0 for some c
between a and b.

THEOREM 4 Rolle’s Theorem Assume that f is continuous on [a, b] and differen-
tiable on (a, b). If f (a) = f (b), then there exists a number c between a and b such
that f ′(c) = 0.

Proof Since f is continuous and [a, b] is closed, f has a min and a max in [a, b]. Where
do they occur? If either the min or the max occurs at a point c in the open interval (a, b),
then f (c) is a local extreme value and f ′(c) = 0 by Fermat’s Theorem (Theorem 2).
Otherwise, both the min and the max occur at the endpoints. However, f (a) = f (b), so
in this case, the min and max coincide and f is a constant function with zero derivative.
Then, f ′(c) = 0 for all c in (a, b).

EXAMPLE 7 Illustrating Rolle’s Theorem Verify Rolle’s Theorem for

f (x) = x4 − x2 on [−2, 2]

Solution The hypotheses of Rolle’s Theorem are satisfied because f is differentiable
(and therefore continuous) everywhere, and f (2) = f (−2):

f (2) = 24 − 22 = 12, f (−2) = (−2)4 − (−2)2 = 12

We must verify that f ′(c) = 0 has a solution in (−2, 2). Since

f ′(x) = 4x3 − 2x = 2x(2x2 − 1)

we need to solve 2x(2x2 − 1) = 0. The solutions are c = 0 and c = ±1/
√

2 ≈ ±0.707.
They all lie in (−2, 2), so Rolle’s Theorem is satisfied with three values of c.

EXAMPLE 8 Using Rolle’s Theorem Show that f (x) = x3 + 9x − 4 has precisely
one real root.
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Solution First, we note that f (0) = −4 is negative and f (1) = 6 is positive. By the

22 21 21a

20

220

x

y

FIGURE 17 Graph of f (x) = x3 + 9x − 4.
This function has one real root.

Intermediate Value Theorem (Section 2.8), f has at least one root a in [0, 1]. If f
had a second root b, then we would have f (a) = f (b) = 0. Rolle’s Theorem would
then imply that f ′(c) = 0 for some c ∈ (a, b). This is not possible because f ′(x) =
3x2 + 9 ≥ 9 > 0, so f ′(c) = 0 has no solutions. We conclude that a is the only real
root of f (Figure 17).
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Pierre de Fermat René Descartes
(1601–1665) (1596–1650)

Sometime in the 1630s, in the decade before
Isaac Newton was born, the French mathe-
matician Pierre de Fermat invented a general
method for finding extreme values. Fermat said,
in essence, that if you want to find extrema, you
must set the derivative equal to zero and solve
for the critical points, just as we have done in
this section. He also described a general method
for finding tangent lines that is not essentially
different from our method of derivatives. For
this reason, Fermat is often regarded as an in-
ventor of calculus, together with Newton and
Leibniz.

At around the same time, René Descartes
(1596–1650) developed a different but less

effective approach to finding tangent lines.
Descartes, after whom Cartesian coordinates
are named, was a profound thinker—the lead-
ing philosopher and scientist of his time in
Europe. He is regarded today as the father
of modern philosophy and the founder (along
with Fermat) of analytic geometry. A dispute
developed when Descartes learned through an
intermediary that Fermat had criticized his work
on optics. Sensitive and stubborn, Descartes re-
taliated by attacking Fermat’s method of find-
ing tangents, and only after some third-party
refereeing did he admit that Fermat was correct.
He wrote:

. . .Seeing the last method that you use for finding tan-
gents to curved lines, I can reply to it in no other way
than to say that it is very good and that, if you had
explained it in this manner at the outset, I would have
not contradicted it at all.

However, in subsequent private correspon-
dence, Descartes was less generous, referring
at one point to some of Fermat’s work as “le
galimatias le plus ridicule”—meaning the most
ridiculous gibberish. Today Fermat is recog-
nized as one of the greatest mathematicians of
his age who made far-reaching contributions in
several areas of mathematics.

4.2 SUMMARY
• The extreme values of f on an interval I are the minimum and maximum values of f
for x ∈ I (also called absolute extrema on I ).

• Basic Theorem: If f is continuous on a closed interval [a, b], then f has both a min
and a max on [a, b].

• f (c) is a local minimum if f (x) ≥ f (c) for all x in some open interval around c. Local
maxima are defined similarly.

• x = c is a critical point of f if either f ′(c) = 0 or f ′(c) does not exist.
• Fermat’s Theorem on Local Extrema: If f (c) is a local min or max, then c is a critical
point.

• To find the extreme values of a continuous function f on a closed interval [a, b]:

Step 1. Find the critical points of f in [a, b].

Step 2. Calculate f (x) at the critical points in [a, b] and at the endpoints. The min and
max on [a, b] are the least and greatest among the values computed in Step 2.

• Rolle’s Theorem: If f is continuous on [a, b] and differentiable on (a, b), and if
f (a) = f (b), then there exists c between a and b such that f ′(c) = 0.
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S E C T I O N 4.2 Extreme Values 227

4.2 EXERCISES

Preliminary Questions
1. What is the definition of a critical point?

In Questions 2 and 3, which is the correct conclusion, (a) or (b)?

2. If f is not continuous on [0, 1], then
(a) f has no extreme values on [0, 1].
(b) f might not have any extreme values on [0, 1].

3. If f is continuous but has no critical points in [0, 1], then
(a) f has no min or max on [0, 1].
(b) Either f (0) or f (1) is the minimum value on [0, 1].

4. For each statement, indicate whether it is true or false. If false, correct
the statement or explain why it is false.

(a) If f ′(c) = 0, then f (c) is either a local minimum or a local maximum.

(b) If f (c) is the absolute maximum of f on an interval I , then f ′(c) = 0.

(c) If f is differentiable and f (c) is a local minimum of f , then f ′(c) = 0.

(d) If there is one local minimum of f on an interval I , then it is the
absolute minimum on I .

Exercises
1. The following refer to Figure 18.

(a) What are the critical points of f on [0, 8]?
(b) What are the maximum and minimum values of f on [0, 8]?
(c) What are the local maximum and minimum values of f , and where do
they occur?
(d) Find a closed interval on which both the minimum and maximum val-
ues of f occur at critical points.
(e) Find an open interval on which f has neither a minimum nor a maxi-
mum value.
(f) Find an open interval on which f has a maximum value but no mini-
mum value.

x

y

83 4 5 6 721
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1

y 5 f (x)

FIGURE 18

2. State whether f (x) = x−1 (Figure 19) has a minimum or maximum
value on the following intervals:

(a) (0, 2) (b) (1, 2) (c) [1, 2]

x

y

1 2 3

FIGURE 19 Graph of f (x) = x−1.

In Exercises 3–20, find all critical points of the function.

3. f (x) = x2 − 2x + 4 4. f (x) = 7x − 2

5. f (x) = x3 − 9
2 x2 − 54x + 2 6. f (t) = 8t3 − t2

7. f (x) = x−1 − x−2 8. g(z) = 1

z − 1
− 1

z

9. f (x) = x

x2 + 1
10. f (x) = x2

x2 − 4x + 8

11. f (t) = t − 4
√

t + 1 12. f (t) = 4t − √
t2 + 1

13. f (x) = xe2x 14. f (x) = x + |2x + 1|

15. g(θ ) = sin2 θ 16. R(θ ) = cos θ + sin2 θ

17. f (x) = x ln x 18. f (x) = x2
√

1 − x2

19. f (x) = sin−1 x − 2x 20. f (x) = sec−1 x − ln x

21. Let f (x) = 2x2 − 8x + 7.

(a) Find the critical point c of f and compute f (c).

(b) Find the extreme values of f on [0, 5].

(c) Find the extreme values of f on [−4, 1].

22. Find the extreme values of f (x) = 2x3 − 9x2 + 12x on [0, 3] and
[0, 2].

23. Find the critical points of f (x) = sin x + cos x and determine the ex-
treme values on

[

0, π2
]

.

24. Compute the critical points of h(t) = (t2 − 1)1/3. Check that your
answer is consistent with Figure 20. Then find the extreme values of h
on [0, 1] and on [0, 2].

1 22122

1

21

t

h(t)

FIGURE 20 Graph of h(t) = (t2 − 1)1/3.

25. GU Plot f (x) = 4
√

x − 2x + 3 on [0, 3] and indicate where it ap-
pears that the minimum and maximum occur. Then determine the mini-
mum and maximum using calculus.

26. CAS Approximate the critical points of g(x) = 5ex − tan x in
(− π

2 , π2
)

.
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In Exercises 27–60, find the minimum and maximum values of the func-
tion on the given interval by comparing values at the critical points and
endpoints.

27. y = 2x2 + 4x + 5, [−2, 2] 28. y = 2x2 + 4x + 5, [0, 2]

29. y = 6t − t2, [0, 5] 30. y = 6t − t2, [4, 6]

31. y = x3 − 6x2 + 8, [1, 6] 32. y = x3 − 6x2 + 8, [−1, 6]

33. y = x3 − 6x2 + 8, [1, 3] 34. y = x3 − 6x2 + 8, [−1, 3]

35. y = 2t3 + 3t2, [1, 2] 36. y = x3 − 12x2 + 21x , [0, 2]

37. y = z5 − 80z, [−3, 3] 38. y = 2x5 + 5x2, [−2, 2]

39. y = x2 + 1

x − 4
, [5, 6] 40. y = 1 − x

x2 + 3x
, [1, 4]

41. y = x − 4x

x + 1
, [0, 3]

42. y = 2
√

x2 + 1 − x , [0, 2]

43. y = (2 + x)
√

2 + (2 − x)2, [0, 2]

44. y = √
1 + x2 − 2x , [0, 1]

45. y = √
x + x2 − 2

√
x , [0, 4] 46. y = (t − t2)1/3, [−1, 2]

47. y = sin x cos x ,
[

0, π2
]

48. y = x + sin x , [0, 2π ]

49. y = √
2 θ − sec θ ,

[

0, π3
]

50. x4 − 2x2 + 1, [−3, 3]

51. y = x3 + x2 − x , [−2, 2]

52. y = cos θ + sin θ , [0, 2π ]

53. y = θ − 2 sin θ , [0, 2π ]

54. y = 4 sin3 θ − 3 cos2 θ , [0, 2π ]

55. y = tan x − 2x , [0, 1] 56. y = xe−x , [0, 2]

57. y = ln x

x
, [1, 3] 58. y = 5 tan−1 x − x , [1, 5]

59. y = 3ex − e2x ,
[− 1

2 , 1
]

60. y = x3 − 24 ln x ,
[ 1

2 , 3
]

61. GU Plot f (x) = 2+x2

x on (0, 5) and use the graph to explain why
there is a minimum value, but no maximum value, of f on (0, 5). Use cal-
culus to find the minimum value.

62. GU Plot f (x) = 4x−1−x2

x on (0, 3) and use the graph to explain why
there is a maximum value, but no minimum value, of f on (0, 3). Use cal-
culus to find the maximum value.

63. Let f (θ ) = 2 sin 2θ + sin 4θ .

(a) Show that θ is a critical point if cos 4θ = − cos 2θ .

(b) Show, using a unit circle, that cos θ1 = − cos θ2 if and only if
θ1 = π ± θ2 + 2πk for an integer k.

(c) Show that cos 4θ = − cos 2θ if and only if θ = π
2 + πk or

θ = π
6 + (

π
3

)

k.

(d) Find the six critical points of f on [0, 2π ] and find the extreme values
of f on this interval.

(e) GU Check your results against a graph of f .

64. GU Find the critical points of f (x) = 2 cos 3x + 3 cos 2x in
[0, 2π ]. Check your answer against a graph of f .

In Exercises 65–68, find the critical points and the extreme values on [0, 4].
In Exercises 67 and 68, refer to Figure 21.

65. y = |x − 2| 66. y = |3x − 9|

67. y = |x2 + 4x − 12| 68. y = | cos x |

x

y 5  x2 1 4x 2 12

226

10

20

30

y 5  cos x
1

2
2 2 2

x

yy

FIGURE 21

In Exercises 69–72, verify Rolle’s Theorem for the given interval by check-
ing f (a) = f (b) and then finding a value c in (a, b) such that f ′(c) = 0.

69. f (x) = x + x−1,
[ 1

2 , 2
]

70. f (x) = sin x ,
[
π
4 , 3π

4

]

71. f (x) = x2

8x − 15
, [3, 5]

72. f (x) = sin2 x − cos2 x ,
[
π
4 , 3π

4

]

73. Prove that f (x) = x5 + 2x3 + 4x − 12 has precisely one real root.

74. Prove that f (x) = x3 + 3x2 + 6x has precisely one real root.

75. Prove that f (x) = x4 + 5x3 + 4x has no root c satisfying c > 0. Hint:
Note that x = 0 is a root and apply Rolle’s Theorem.

76. Prove that x = 4 is the greatest root of f (x) = x4 − 8x2 − 128.

77. The position of a mass oscillating at the end of a spring is s(t) =
A sinωt , where A is the amplitude and ω is the angular frequency. Show
that the speed |v(t)| is at a maximum when the acceleration a(t) is zero and
that |a(t)| is at a maximum when v(t) is zero.

78. The concentration C(t) (in milligrams per cubic centimeter) of a drug
in a patient’s bloodstream after t hours is

C(t) = 0.016t

t2 + 4t + 4

Find the maximum concentration in the time interval [0, 8] and the time at
which it occurs.

79. CAS Antibiotic Levels A study shows that the concentration C(t)
(in micrograms per milliliter) of antibiotic in a patient’s blood serum after t
hours is C(t) = 120(e−0.2t − e−bt ), where b ≥ 1 is a constant that depends
on the particular combination of antibiotic agents used. Solve numerically
for the value of b (to two decimal places) for which maximum concen-
tration occurs at t = 1 h. You may assume that the maximum occurs at a
critical point, as suggested by Figure 22.
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t (h)

C (mcg/mL)

2 4 6 8 10 12

20

40

60

80

100

FIGURE 22 Graph of C(t) = 120(e−0.2t − e−bt ) with b chosen so that
the maximum occurs at t = 1 h.

80. CAS In the notation of Exercise 79, find the value of b (to
two decimal places) for which the maximum value of C is equal to
100 mcg/ml.

81. In 1919, physicist Alfred Betz argued that the maximum efficiency of
a wind turbine is around 59%. If wind enters a turbine with speed v1 and
exits with speed v2, then the power extracted is the difference in kinetic
energy per unit time:

P = 1

2
mv2

1 − 1

2
mv2

2 watts

where m is the mass of wind flowing through the rotor per unit time (Fig-
ure 23). Betz assumed that m = ρA(v1 + v2)/2, where ρ is the density of
air and A is the area swept out by the rotor. Wind flowing undisturbed
through the same area A would have mass per unit time ρAv1 and power
P0 = 1

2ρAv3
1 . The fraction of power extracted by the turbine is F = P/P0.

(a) Show that F depends only on the ratio r = v2/v1 and is equal to
F(r ) = 1

2 (1 − r2)(1 + r ), where 0 ≤ r ≤ 1.

(b) Show that the maximum value of F , called the Betz Limit, is
16/27 ≈ 0.59.

(c) Explain why Betz’s formula for F is not meaningful for r close
to zero. Hint: How much wind would pass through the turbine if v2 were
zero? Is this realistic?

1

0.1

0.2

0.3

0.5

0.4

0.6

0.5

F

(A) Wind flowing through a turbine. (B) F is the fraction of energy

       extracted by the turbine as a 

      function of r 5   2/  1.

1

r

1 2

FIGURE 23

82. GU The Bohr radius a0 of the hydrogen atom is the value of r that
minimizes the energy

E(r ) = h̄2

2mr2
− e2

4πε0r

where h̄, m, e, and ε0 are physical constants. Show that
a0 = 4πε0h̄2/(me2). Assume that the minimum occurs at a critical point,
as suggested by Figure 24.

1 32
21

22

1

2

r (10210 m) 

E(r) (10218 joules) 

FIGURE 24

83. The response of a circuit or other oscillatory system to an input of
frequency ω (“omega”) is described by the function

φ(ω) = 1
√

(ω2
0 − ω2)2 + 4D2ω2

Both ω0 (the natural frequency of the system) and D (the damping fac-
tor) are positive constants. The graph of φ is called a resonance curve,
and the positive frequency ωr > 0, where φ takes its maximum value, if

it exists, is called the resonant frequency. Show that ωr =
√

ω2
0 − 2D2

if 0 < D < ω0/
√

2 and that no resonant frequency exists otherwise
(Figure 25).

(A) D 5 0.01 (B) D 5 0.2

2 2

(C) D 5 0.75 (no resonance)

50

1

2

3

31 2

1

0.5

r r

FIGURE 25 Resonance curves with ω0 = 1.

84. Find the maximum and minimum of y = (1 − x)eax on [0, 1], where
0 < a.

85. Find the maximum of y = xa − xb on [0, 1], where 0 < a < b. In par-
ticular, find the maximum of y = x5 − x10 on [0, 1].

In Exercises 86–88, plot the function using a graphing utility and find its
critical points and extreme values on [−5, 5].

86. GU y = 1

1 + |x − 1|

87. GU y = 1

1 + |x − 1| + 1

1 + |x − 4|
88. GU y = x

|x2 − 1| + |x2 − 4|
89. (a) Use implicit differentiation to find the critical points on the curve
27x2 = (x2 + y2)3.
(b) GU Plot the curve and the horizontal tangent lines on the same set
of axes.

90. Sketch the graph of a continuous function on (0, 4) with a minimum
value but no maximum value.

91. Sketch the graph of a continuous function on (0, 4) having a local min-
imum but no absolute minimum.

92. Sketch the graph of a function on [0, 4] having
(a) Two local maxima and one local minimum
(b) An absolute minimum that occurs at an endpoint, and an absolute
maximum that occurs at a critical point

93. Sketch the graph of a function f on [0, 4] with a discontinuity such
that f has an absolute minimum but no absolute maximum.
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94. A rainbow is produced by light rays that enter a raindrop (assumed
spherical) and exit after being reflected internally as in Figure 26. The
angle between the incoming and reflected rays is θ = 4r − 2i , where the
angle of incidence i and the angle of refraction r are related by Snell’s Law
sin i = n sin r with n ≈ 1.33 (the index of refraction for air and water).

(a) Use Snell’s Law to show that
dr

di
= cos i

n cos r
.

(b) Show that the maximum value θmax of θ occurs when i satisfies

cos i =
√

n2 − 1

3
. Hint: Show that

dθ

di
= 0 if cos i = n

2
cos r . Then use

Snell’s Law to eliminate r .

(c) Show that θmax ≈ 42.53◦.

i
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r
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Water

droplet
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FIGURE 26

Further Insights and Challenges
95. Show that the extreme values of f (x) = a sin x + b cos x are
±√

a2 + b2.

96. Show, by considering its minimum, that f (x) = x2 − 2x + 3 takes on
only positive values. More generally, find the conditions on r and s under
which the quadratic function f (x) = x2 + r x + s takes on only positive
values. Give examples of r and s for which f takes on both positive and
negative values.

97. Show that if the quadratic polynomial f (x) = x2 + r x + s takes on
both positive and negative values, then its minimum value occurs at the
midpoint between the two roots.

98. Generalize Exercise 97: Show that if the horizontal line y = c in-
tersects the graph of f (x) = x2 + r x + s at two points (x1, f (x1)) and

(x2, f (x2)), then f takes its minimum value at the midpoint M = x1 + x2

2
(Figure 27).

x
x1 M

c

y 5 f (x)

y 5 c

x2

y

FIGURE 27

99. A cubic polynomial may have a local min and max, or it may have
neither (Figure 28). Find conditions on the coefficients a and b of

f (x) = 1

3
x3 + 1

2
ax2 + bx + c

that ensure f has neither a local min nor a local max. Hint: Apply Exer-
cise 96 to f ′(x).

24 22 42

(A) (B)

22 42

20

220

60

30

x

y

x

y

FIGURE 28 Cubic polynomials.

100.Find the min and max of

f (x) = x p(1 − x)q on [0, 1]

where p, q > 0.

101. Prove that if f is continuous and f (a) and f (b) are local min-
ima where a < b, then there exists a value c between a and b such that
f (c) is a local maximum. (Hint: Apply Theorem 1 to the interval [a, b].)
Show that continuity is a necessary hypothesis by sketching the graph of
a function (necessarily discontinuous) with two local minima but no local
maximum.

4.3 The Mean Value Theorem and Monotonicity

We have taken for granted that if f ′(x) is positive, the function f is increasing, and

a c b

Slope  f '(c)

Slope
f (b) − f (a)

b − a
x

y

FIGURE 1 By the MVT, there exists at least
one tangent line parallel to the secant line.

if f ′(x) is negative, f is decreasing. In this section, we prove this rigorously using an
important result called the Mean Value Theorem (MVT). Then we develop a method
for “testing” critical points—that is, for determining whether they correspond to local
maxima, local minima, or neither.

The MVT says that a secant line between two points (a, f (a)) and (b, f (b)) on a
graph is parallel to at least one tangent line in the interval (a, b) (Figure 1). Since the

secant line between (a, f (a)) and (b, f (b) has slope
f (b) − f (a)

b − a
and since two lines
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are parallel if they have the same slope, the MVT is claiming that there exists a point c
between a and b such that

f ′(c)
︸ ︷︷ ︸

Slope of tangent line

= f (b) − f (a)

b − a
︸ ︷︷ ︸

Slope of secant line

THEOREM 1 The Mean Value Theorem Assume that f is continuous on the closed
interval [a, b] and differentiable on (a, b). Then there exists at least one value c in
(a, b) such that

f ′(c) = f (b) − f (a)

b − a

Rolle’s Theorem (Section 4.2) is the special case of the MVT in which f (a) = f (b).
In this case, the conclusion is that f ′(c) = 0.

FIGURE 2 Move the secant line in a parallel
fashion until it becomes tangent to the
curve.

GRAPHICAL INSIGHT Imagine what happens when a secant line is moved parallel to
itself. Eventually, it becomes a tangent line, as shown in Figure 2. This is the idea
behind the MVT. We present a formal proof at the end of this section.

CONCEPTUAL INSIGHT The conclusion of the MVT can be rewritten as

f (b) − f (a) = f ′(c)(b − a)

We can think of this as a variation on the Linear Approximation, which says

f (b) − f (a) ≈ f ′(a)(b − a)

The MVT turns this approximation into an equality by replacing f ′(a) with f ′(c) for a
suitable choice of c in (a, b).

EXAMPLE 1 Verify the MVT with f (x) = √
x , a = 1, and b = 9.

Solution First, compute the slope of the secant line (Figure 3):

y

x
1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

(1, 1)

(9, 3)

Secant line

Tangent line
f (x) 5   x

DF FIGURE 3 The tangent line at c = 4 is
parallel to the secant line.

f (b) − f (a)

b − a
=

√
9 − √

1

9 − 1
= 3 − 1

9 − 1
= 1

4

We must find c such that f ′(c) = 1/4. The derivative is f ′(x) = 1
2 x−1/2, and

f ′(c) = 1

2
√

c
= 1

4
⇒ 2

√
c = 4 ⇒ c = 4

The value c = 4 lies in (1, 9) and satisfies f ′(4) = 1
4 . This verifies the MVT.

As a first application, we prove that a function with zero derivative is constant.

COROLLARY If f is differentiable and f ′(x) = 0 for all x ∈ (a, b), then f is constant
on (a, b). In other words, f (x) = C for some constant C .

Proof If a1 and b1 are any two distinct points in (a, b), then, by the MVT, there exists c
between a1 and b1 such that

f (b1) − f (a1) = f ′(c)(b1 − a1) = 0 (since f ′(c) = 0)

Thus, f (b1) = f (a1). This says that f (x) is constant on (a, b).
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Increasing / Decreasing Behavior of Functions
We prove now that the sign of the derivative determines whether a function f is increas-
ing or decreasing. Recall that f is

• Increasing on (a, b) if f (x1) < f (x2) for all x1, x2 ∈ (a, b) such that x1 < x2.
• Decreasing on (a, b) if f (x1) > f (x2) for all x1, x2 ∈ (a, b) such that x1 < x2.

We say that f ismonotonic on (a, b) if it is either increasing or decreasing on (a, b).

We say that f is “nondecreasing” if

f (x1) ≤ f (x2) for x1 ≤ x2

“Nonincreasing” is defined similarly. In
Theorem 2, if we assume that f ′(x) ≥ 0
(instead of > 0), then f is nondecreasing
on (a, b). If f ′(x) ≤ 0, then f is
nonincreasing on (a, b).

THEOREM 2 The Sign of the Derivative Let f be a differentiable function on an
open interval (a, b).

• If f ′(x) > 0 for x ∈ (a, b), then f is increasing on (a, b).
• If f ′(x) < 0 for x ∈ (a, b), then f is decreasing on (a, b).

Proof Suppose first that f ′(x) > 0 for all x ∈ (a, b). The MVT tells us that for any two
points x1 < x2 in (a, b), there exists c between x1 and x2 such that

f (x2) − f (x1) = f ′(c)(x2 − x1) > 0

The inequality holds because f ′(c) and (x2 − x1) are both positive. Thus, f (x2)> f (x1),
as required. The case f ′(x) < 0 is similar.

GRAPHICAL INSIGHT Theorem 2 confirms our graphical intuition (Figure 4):

• f ′(x) > 0 ⇒ tangent lines have positive slope ⇒ f increasing
• f ′(x) < 0 ⇒ tangent lines have negative slope ⇒ f decreasing

Increasing function:
Tangent lines have positive slope.

Decreasing function:
Tangent lines have negative slope.

FIGURE 4

EXAMPLE 2 Show that f (x) = ln x is increasing.

Solution The derivative f ′(x) = x−1 is positive on the domain {x : x > 0}, so f (x) =
ln x is increasing (Figure 5).

f  increasing

1
x

y

FIGURE 5 Graph of f (x) = ln x .

   < 0

f increasingf decreasing

21

24

31

y

x

'f    > 0'f

FIGURE 6 Graph of f (x) = x2 − 2x − 3.

EXAMPLE 3 Find the intervals on which f (x) = x2 − 2x − 3 is monotonic.

Solution The derivative f ′(x) = 2x − 2 = 2(x − 1) is positive for x > 1 and negative
for x < 1. By Theorem 2, f is decreasing on the interval (−∞, 1) and increasing on the
interval (1, ∞), as confirmed in Figure 6.

Testing Critical Points
There is a useful test for determining whether a critical point yields a min or max (or
neither) based on the sign change of the derivative f ′(x).

To explain the term “sign change,” suppose that a function g satisfies g(c) = 0.
We say that g(x) changes from positive to negative at x = c if g(x) > 0 to the left of
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c and g(x) < 0 to the right of c for x within a small open interval around c (Figure 7).
A sign change from negative to positive is defined similarly. Observe in Figure 7 that

y

x

No sign change
Sign change
from 2 to 1

Sign change
from 1 to 2

y 5 g(x)

4321 5

FIGURE 7

g(5) = 0 but g(x) does not change sign at x = 5.
Now suppose that f ′(c) = 0 and that f ′(x) changes sign at x = c, say, from + to −.

Then f is increasing to the left of c and decreasing to the right, so f (c) is a local max-
imum. Similarly, if f ′(x) changes sign from − to +, then f (c) is a local minimum. See
Figure 8(A). Figure 8(B) illustrates a case where f ′(c) = 0 but f ′(x) does not change
sign. In this case, f ′(x) > 0 for all x near but not equal to c, so f is increasing and has
neither a local min nor a local max at c.

(A)

   (x) 5 3x2 2 27

f (x) 5 x3 2 27x 2 20

3

Local max

Local min

23

   (x) changes
from 2 to 1

323

(B)

   (x) does not
change sign

Neither a local
min nor max

y 5 f (x)

c

c

y 5    (x)

x

x

y

y

y

y

x

x

'f

'f   (x) changes
from 1 to 2
'f 'f

'f

DF FIGURE 8

A similar analysis holds when f ′(c) does not exist and the possibilities for the sign
of f ′ on either side of c are considered. As a result, we have the following theorem:

THEOREM 3 First Derivative Test for Critical Points Let c be a critical point of f .
Then

• f ′(x) changes from + to − at c ⇒ f (c) is a local maximum.
• f ′(x) changes from − to + at c ⇒ f (c) is a local minimum.

To carry out the First Derivative Test, we make a useful observation: f ′(x) can
change sign at a critical point, but it cannot change sign on the interval between two
consecutive critical points as long as the function is defined over the whole interval.
In such a case, we can determine the sign of f ′(x) on an interval between consecutive
critical points by evaluating f ′(x) at any test point x0 inside the interval. The sign of
f ′(x0) is the sign of f ′(x) on the entire interval. In a case where a function’s domain
is made up of separate intervals, this analysis of the sign of f ′ needs to be carried out
individually on each of the intervals.

EXAMPLE 4 Analyze the critical points of f (x) = x3 − 27x − 20.

Solution Our analysis will confirm the picture in Figure 8(A).

Step 1. Find the critical points.
We have f ′(x) = 3x2 − 27 = 3(x2 − 9). The critical points satisfy f ′(c) = 0 and
therefore are c = ±3.
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Step 2. Find the sign of f ′(x) on the intervals between the critical points.
The critical points c = ±3 divide the real line into three intervals:

(−∞, −3), (−3, 3), (3, ∞)

To determine the sign of f ′(x) on these intervals, we choose a test point inside each in-
terval and evaluate. For example, in (−∞, −3) we choose x = −4. Because f ′(−4) =
21 > 0, f ′(x) is positive on the entire interval (−3, ∞). Taking this result, along with

We chose the test points −4, 0, and 4
arbitrarily. To find the sign of f ′(x) on
(−∞, −3), we could just as well have
computed f ′(−5) or any other value of f ′

in the interval (−∞, −3).

the results from test points at 0 and 4, we have

f ′(−4) = 21 > 0 ⇒ f ′(x) > 0 for all x ∈ (−∞, −3)

f ′(0) = −27 < 0 ⇒ f ′(x) < 0 for all x ∈ (−3, 3)

f ′(4) = 21 > 0 ⇒ f ′(x) > 0 for all x ∈ (3, ∞)

This information is displayed in the following sign diagram:

3−3

−+ +Sign of f ´(x)

0

Behavior of f (x)

Step 3. Use the First Derivative Test.

• c = − 3: f ′(x) changes from + to − ⇒ f (−3) = 34 is a local maxi-
mum value.

• c = 3: f ′(x) changes from − to + ⇒ f (3) = −74 is a local mini-
mum value.

EXAMPLE 5 Analyze the critical points and the increase/decrease behavior of
f (x) = cos2 x + sin x in (0,π ).

Solution First, find the critical points:

f ′(x) = −2 cos x sin x + cos x = (cos x)(1 − 2 sin x)

Therefore, the critical points are solutions to cos x = 0 or sin x = 1
2 . Since we are just

1 12 2

1

−1

1

y = f ´(x)

y = f (x)

π π

π

2
π

6
5π

6

π

2
π

6
5π

6

y

y

x

x

FIGURE 9 Graph of f (x) = cos2 x + sin x
and its derivative.

examining the interval (0,π ), the critical points of interest are π
6 ,

π
2 , and

5π
6 . They divide

(0,π ) into four intervals:
(

0,
π

6

)

,
(π

6
,
π

2

)

,
(π

2
,

5π

6

)

,
(5π

6
,π

)

We determine the sign of f ′(x) by evaluating f ′(x) at a test point inside each inter-
val. Since π

6 ≈ 0.52, π2 ≈ 1.57, 5π
6 ≈ 2.62, and π ≈ 3.14, we can use the following test

points:

Interval Test value Sign of f ′(x) Behavior of f (x)
(

0, π6
)

f ′(0.5) ≈ 0.04 + ↗
(
π
6 , π2

)

f ′(1) ≈ −0.37 − ↘
(
π
2 , 5π

6

)

f ′(2) ≈ 0.34 + ↗
( 5π

6 ,π
)

f ′(3) ≈ −0.71 − ↘

Now apply the First Derivative Test:

• Local max at c = π
6 and c = 5π

6 because f ′(x) changes from + to −.

• Local min at c = π
2 because f ′(x) changes from − to +.

The behavior of f (x) and f ′(x) is reflected in the graphs in Figure 9.
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EXAMPLE 6 Analyze the critical points and the increase/decrease behavior of f (x) =
x2 + 1

x2 .

Solution Note that f is undefined at x = 0, so we need to analyze f separately on
(−∞, 0) and (0, ∞). We have

f ′(x) = 2x − 2

x3

The critical points are solutions to x − 1
x3 = 0; that is, to x4 − 1 = 0. They are c = ±1.

Since we need to consider f separately on (−∞, 0) and (0, ∞), there are four inter-

x
0 1−1

y

FIGURE 10 Graph of f (x) = x2 + 1
x2 .

vals on which we need to examine the sign of f ′(x): (−∞, −1), (−1, 0), (0, 1), and
(1, ∞). We determine the sign of f ′(x) by evaluating f ′(x) at a test point inside each
interval.

Interval Test value Sign of f ′(x) Behavior of f (x)

(−∞, −1) f ′(−2) = −3.75 − ↘
(−1, 0) f ′(−0.5) = 15 + ↗
(0, 1) f ′(0.5) = −15 − ↘

(1, ∞) f ′(2) = 3.75 + ↗

Applying the First Derivative Test, we see that both critical points are local minima.
This is verified in the graph in Figure 10.

EXAMPLE 7 A Critical Point Where f ′(x) Is Undefined Analyze the critical points
of f (x) = (1 − x)2/3.x

1

y

FIGURE 11 Graph of f (x) = (1 − x)2/3.
Solution The derivative is f ′(x) = − 2

3 (1 − x)−1/3 = −2
3(1−x)1/3 . The only critical point

occurs at c = 1, when f ′(x) is undefined. For x < 1, f ′(x) is negative. For x > 1, f ′(x)
is positive. So f ′(x) changes sign as we pass through c = 1, and by the First Derivative
Test, f (c) is a local minimum. See Figure 11.

EXAMPLE 8 Infinitely Many Critical Points, No Local Extrema Analyze the critical
points of f (x) = x − sin x .

Solution We have f ′(x) = 1 − cos x , and therefore critical points occur at solutions to
cos x = 1; that is, at nπ for all even integers n. At none of the critical points does the
sign of f ′ change since f ′(x) ≥ 0 for all x . Therefore, none of the critical points are
local extrema (Figure 12).

−10−15 −5 5 1510

10

15

5

−10

−15

−5

y

x

FIGURE 12 Graph of f (x) = x − sin x .
Proof of theMVT Let m = f (b) − f (a)

b − a
be the slope of the secant line joining (a, f (a))

and (b, f (b)). The secant line has equation y = mx + r for some r (Figure 13). Now
consider the function

G(x) = f (x) − (mx + r )

As indicated in Figure 13, G(x) is the vertical distance between the graph and the secant
x

y

a x b

G(x) 5 f (x) 2 (mx 1 r)

y 5 f (x)

y 5 mx 1 r

FIGURE 13 G(x) is the vertical distance
between the graph and the secant line.

line at x (it is negative at points where the graph of f lies below the secant line). This
distance is zero at the endpoints, and therefore, G(a) = G(b) = 0. By Rolle’s Theorem
(Section 4.2), there exists a point c in (a, b) such that G ′(c) = 0. But G ′(x) = f ′(x) − m,
so G ′(c) = f ′(c) − m = 0, and f ′(c) = m as desired.
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4.3 SUMMARY
• The Mean Value Theorem (MVT): If f is continuous on [a, b] and differentiable on

(a, b), then there exists at least one value c in (a, b) such that

f ′(c) = f (b) − f (a)

b − a

This conclusion can also be written

f (b) − f (a) = f ′(c)(b − a)

• Important corollary of the MVT: If f ′(x) = 0 for all x ∈ (a, b), then f is constant on
(a, b).

• The sign of f ′(x) determines whether f is increasing or decreasing:

f ′(x) > 0 for x ∈ (a, b) ⇒ f is increasing on (a, b)

f ′(x) < 0 for x ∈ (a, b) ⇒ f is decreasing on (a, b)

• On an interval over which f is defined, the sign of f ′(x) can change only at the
critical points, so f is monotonic (increasing or decreasing) on the intervals between
the critical points.

• On an interval over which f is defined, to find the sign of f ′(x) on an interval between
two critical points, calculate the sign of f ′(x0) at any test point x0 in that interval.

• First Derivative Test: If f is differentiable and c is a critical point, then

Sign change of f ′(x) at c Type of critical point

From + to − Local maximum
From − to + Local minimum

4.3 EXERCISES

Preliminary Questions
1. For which value of m is the following statement correct? If f (2) = 3
and f (4) = 9, and f is differentiable, then f has a tangent line of slope m.

2. Assume f is differentiable. Which of the following statements does
not follow from the MVT?

(a) If f has a secant line of slope 0, then f has a tangent line of
slope 0.

(b) If f (5) < f (9), then f ′(c) > 0 for some c ∈ (5, 9).

(c) If f has a tangent line of slope 0, then f has a secant line of
slope 0.

(d) If f ′(x) > 0 for all x , then every secant line has positive slope.

3. Can a function with the real numbers as its domain that takes on only
negative values have a positive derivative? If so, sketch an example.

4. For f with derivative as in Figure 14:

(a) Is f (c) a local minimum or maximum?

(b) Is f a decreasing function?

c
x

y

FIGURE 14 Graph of derivative f ′.

5. Which of the six standard trigonometric functions have infinitely
many local minima and infinitely many local maxima but no absolute max-
imum and no absolute minimum over their whole domain?

6. Compose the absolute value with a familiar function to define a func-
tion f that

• has infinitely many local maxima, all of which occur where
f ′ = 0, and

• has infinitely many local minima, all of which occur where f ′ is
undefined.
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Exercises
In Exercises 1–8, find a point c satisfying the conclusion of the MVT for
the given function and interval.

1. y = x−1, [2, 8] 2. y = √
x , [9, 25]

3. y = cos x − sin x , [0, 2π ] 4. y = x

x + 2
, [1, 4]

5. y = x3, [−4, 5] 6. y = x ln x , [1, 2]

7. y = e−2x , [0, 3] 8. y = ex − x , [−1, 1]

In Exercises 9–12, find a point c satisfying the conclusion of the MVT
for the given function and interval. Then draw the graph of the function,
the secant line between the endpoints of the graph and the tangent line at
(c, f (c)), to see that the secant and tangent lines are, in fact, parallel.

9. y = x2, [0, 1] 10. y = x2/3, [0, 8]

11. y = ex , [0, 1] 12. y = √
x , [0, 3]

13. GU Let f (x) = x5 + x2. The secant line between (0, 0) and (1, 2)
has slope 2 (check this), so by the MVT, f ′(c) = 2 for some c ∈ (0, 1).
Plot f and the secant line on the same axes. Then plot y = 2x + b for dif-
ferent values of b until the line becomes tangent to the graph of f . Zoom
in on the point of tangency to estimate the x-coordinate c of the point of
tangency.

14. GU Plot the derivative of f (x) = 3x5 − 5x3. Describe its sign
changes and use this to determine the local extreme values of f . Then
graph f to confirm your conclusions.

15. Determine the intervals on which f ′(x) is positive and negative, as-
suming that Figure 15 is the graph of f .

16. Determine the intervals on which f is increasing or decreasing, as-
suming that Figure 15 is the graph of f ′.

17. State whether f (2) and f (4) are local minima or local maxima, as-
suming that Figure 15 is the graph of f ′.

654321

y

x

FIGURE 15

18. Figure 16 shows the graph of the derivative f ′ of a function f . Find
the critical points of f and determine whether they are local minima, local
maxima, or neither.

320.522 21

y 5    (x)

6

22

y

x

'f

FIGURE 16

In Exercises 19–22, sketch the graph of a function f whose derivative f ′
has the given description.

19. f ′(x) > 0 for x > 3 and f ′(x) < 0 for x < 3

20. f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1

21. f ′(x) is negative on (1, 3) and positive everywhere else.

22. f ′(x) makes the sign transitions +, −, +, −.

In Exercises 23–26, find all critical points of f and use the First Derivative
Test to determine whether they are local minima or local maxima.

23. f (x) = 4 + 6x − x2 24. f (x) = x3 − 12x − 4

25. f (x) = x2

x + 1
26. f (x) = x3 + x−3

In Exercises 27–58, find the critical points and the intervals on which the
function is increasing or decreasing. Use the First Derivative Test to de-
termine whether the critical point yields a local min or max (or neither).

27. y = −x2 + 7x − 17 28. y = 5x2 + 6x − 4

29. y = x3 − 12x2 30. y = x(x − 2)3

31. y = 3x4 + 8x3 − 6x2 − 24x 32. y = x2 + (10 − x)2

33. y = 1
3 x3 + 3

2 x2 + 2x + 4 34. y = x4 + x3

35. y = x5 + x3 + 1 36. y = x5 + x3 + x

37. y = x4 − 4x3/2 (x > 0) 38. y = x5/2 − x2 (x > 0)

39. y = x + x−1 40. y = x−2 − 4x−1

41. y = 1

x2 + 1
42. y = 2x + 1

x2 + 1

43. y = x3

x2 + 1
44. y = x3

x2 − 3

45. y = θ + sin θ + cos θ , [0, 2π ] 46. y = sin θ +
√

3 cos θ , [0, 2π ]

47. y = sin2 θ + sin θ , [0, 2π ] 48. y = θ − 2 cos θ , [0, 2π ]

49. y = x + e−x 50. y = ex

x

51. y = e−x cos x ,
[ − π

2 , π2
]

52. y = x2ex

53. y = tan−1 x − 1
2 x 54. y = (x2 − 2x)ex

55. y = x − ln x2 56. y = ln x2

x

57. y = x1/3 58. y = x2/3 − x2

59. Find the maximum value of f (x) = x−x for x > 0.

60. Show that f (x) = x2 + bx + c is decreasing on
( − ∞, − b

2

)

and in-
creasing on

( − b
2 , ∞)

.

61. Show that f (x) = x3 − 2x2 + 2x is an increasing function. Hint: Find
the minimum value of f ′.

62. Find conditions on a and b that ensure f (x) = x3 + ax + b is increas-
ing on (−∞, ∞).

63. Ron’s toll pass recorded him entering the tollway at mile 0 at
12:17 PM. He exited at mile 115 at 1:52 PM, and soon thereafter he was
pulled over by the state police. “The speed limit on the tollway is 65 miles
per hour,” the trooper told Ron. “You exceeded that by more than five
miles per hour this afternoon.” “No way!” responded Ron. “I glance at the
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speedometer frequently, and not once did it read over 65!” How did the
trooper use the Mean Value Theorem to support her claim that Ron must
have gone more than 70 miles per hour at some point?

64. Two days after he bought a speedometer for his bicycle, Lance
brought it back to the Yellow Jersey Bike Shop. “There is a problem with
this speedometer,” Lance complained to the clerk. “Yesterday I cycled the
22-mile Rogadzo Road Trail in 78 minutes, and not once did the speedome-
ter read above 15 miles per hour!” “Yeah?” responded the clerk. “What’s
the problem?” How did Lance use the Mean Value Theorem to explain his
complaint?

65. Determine where f (x) = (1,000 − x)2 + x2 is decreasing. Use this to
decide which is larger: 8002 + 2002 or 6002 + 4002.

66. Show that f (x) = 1 − |x | satisfies the conclusion of the MVT
on [a, b] if both a and b are positive or negative, but not if a < 0
and b > 0.

67. Which values of c satisfy the conclusion of the MVT on the interval
[a, b] if f is a linear function?

68. Show that if f is any quadratic polynomial, then the midpoint c =
a + b

2
satisfies the conclusion of the MVT on [a, b] for any a and b.

69. Suppose that f (0) = 2 and f ′(x) ≤ 3 for x > 0. Apply the MVT
to the interval [0, 4] to prove that f (4) ≤ 14. Prove more generally that
f (x) ≤ 2 + 3x for all x > 0.

70. Show that if f (2) = −2 and f ′(x) ≥ 5 for x > 2, then f (4) ≥ 8.

71. Show that if f (2) = 5 and f ′(x) ≥ 10 for x > 2, then f (x) ≥
10x − 15 for all x > 2.

Further Insights and Challenges
72. Show that a cubic function f (x) = x3 + ax2 + bx + c is increasing
on (−∞, ∞) if b > a2/3.

73. Prove that if f (0) = g(0) and f ′(x) ≤ g′(x) for x ≥ 0, then f (x) ≤
g(x) for all x ≥ 0. Hint: Show that the function given by y = f (x) − g(x)
is nonincreasing.

74. Use Exercise 73 to prove that x ≤ tan x for 0 ≤ x < π
2 and sin x ≤ x

for x ≥ 0.

75. Use Exercises 73 and 74 to prove the following assertions for all x ≥ 0
(each assertion follows from the previous one):

(a) cos x ≥ 1 − 1
2 x2

(b) sin x ≥ x − 1
6 x3

(c) cos x ≤ 1 − 1
2 x2 + 1

24 x4

Can you guess the next inequality in the series?

76. Let f (x) = e−x . Use the method of Exercise 75 to prove the following
inequalities for x ≥ 0:

(a) e−x ≥ 1 − x
(b) e−x ≤ 1 − x + 1

2 x2

(c) e−x ≥ 1 − x + 1
2 x2 − 1

6 x3

Can you guess the next inequality in the series?

77. Assume that f ′′ exists and f ′′(x) = 0 for all x . Prove that f (x) =
mx + b, where m = f ′(0) and b = f (0).

78. Define f (x) = x3 sin
( 1

x

)

for x �= 0 and f (0) = 0.

(a) Show that f ′ is continuous at x = 0 and that x = 0 is a critical point
of f .

(b) GU Examine the graphs of f and f ′. Can the First Derivative Test
be applied?

(c) Show that f (0) is neither a local min nor a local max.

79. Suppose that f (x) satisfies the following equation (an example of a
differential equation):

f ′′(x) = − f (x) 1

(a) Show that f (x)2 + f ′(x)2 = f (0)2 + f ′(0)2 for all x . Hint: Show
that the function on the left has zero derivative.

(b) Verify that f (x) = sin x and f (x) = cos x satisfy Eq. (1), and deduce
that sin2 x + cos2 x = 1.

80. Suppose that functions f and g satisfy Eq. (1) and have the same
initial values—that is, f (0) = g(0) and f ′(0) = g′(0). Prove that f (x) =
g(x) for all x . Hint: Apply Exercise 79(a) to f − g.

81. Use Exercise 80 to prove f (x) = sin x is the unique solution of Eq. (1)
such that f (0) = 0 and f ′(0) = 1; and g(x) = cos x is the unique solution
such that g(0) = 1 and g′(0) = 0. This result can be used to develop all the
properties of the trigonometric functions “analytically”—that is, without
reference to triangles.

4.4 The Second Derivative and Concavity

In the previous section, we studied the increasing/decreasing behavior of a function, as
determined by the sign of the derivative. Another important property is concavity, which
refers to the way the graph bends. Informally, a curve is concave up if it bends up and
concave down if it bends down (Figure 1).

Concave downConcave up

FIGURE 1
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To analyze concavity in a precise fashion, let’s examine how concavity is related
to tangent lines and derivatives. Observe in Figure 2 that when f is concave up, f ′ is
increasing (the slopes of the tangent lines increase as we move to the right). Similarly,
when f is concave down, f ′ is decreasing. This suggests the following definition.

Concave up: Slopes of tangent

lines are increasing.

Concave down: Slopes of tangent

lines are decreasing.

 5 21

 5 0

 5 1'f

 5 21'f

'f

 5 0'f

'f

 5 1'f

FIGURE 2

DEFINITION Concavity Let f be a differentiable function on an open interval (a, b).
Then

• f is concave up on (a, b) if f ′ is increasing on (a, b).
• f is concave down on (a, b) if f ′ is decreasing on (a, b).

EXAMPLE 1 Concavity and Stock Prices The stocks of two companies, Arenot
Industries (AI) and Blurbenthal Business Associates (BBA), went up in value, and both
currently sell for $75 (Figure 3). However, one is clearly a better investment than the
other, assuming these trends continue in the same manner. Explain in terms of concavity.

Stock price

75

25

75

25

Stock price

Company AI Company BBA

Time Time

FIGURE 3

Solution The graph of Stock AI is concave down, so its growth rate (first derivative) is
declining as time goes on. The graph of Stock BBA is concave up, so its growth rate is
increasing. If these trends continue, Stock BBA is the better investment.

The concavity of a function is determined by the sign of its second derivative. Indeed,
if f ′′(x) > 0, then f ′ is increasing and hence f is concave up. Similarly, if f ′′(x) < 0,
then f ′ is decreasing and f is concave down.

THEOREM 1 Test for Concavity Assume that f ′′(x) exists for all x ∈ (a, b).

• If f ′′(x) > 0 for all x ∈ (a, b), then f is concave up on (a, b).
• If f ′′(x) < 0 for all x ∈ (a, b), then f is concave down on (a, b).
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Of special interest are the points on the graph where the concavity changes. We say
that P = (c, f (c)) is a point of inflection of f if the concavity changes from up to down

CAUTION A critical point c is just a single
number, whereas a point of inflection
(c, f (c)) is a point in the xy-plane. or from down to up at x = c. Figure 4 shows a curve made up of two arcs—one is concave

down and one is concave up (the word “arc” refers to a piece of a curve). The point P
where the arcs are joined is a point of inflection. We will denote points of inflection in
graphs by a solid square .

Concave down Concave up

P

P 5 point of inflection

FIGURE 4

According to Theorem 1, the concavity of f is determined by the sign of f ′′(x).
Therefore, a point of inflection is a point where f ′′(x) changes sign.

THEOREM 2 Test for Inflection Points If f ′′(c) = 0 or f ′′(c) does not exist and
f ′′(x) changes sign at x = c, then f has a point of inflection at x = c.

EXAMPLE 2 Find the points of inflection of f (x) = cos x on [0, 2π ].

y

π

2
3π 2π

2

π

2
3π 2π

2

Concave
down

Concave
up

Concave
down

1

−1

−1

1

f ´́ (x) = −cos x

f (x) = cos x
x

y

x

FIGURE 5

Solution We have

f ′′(x) = − cos x , and f ′′(x) = 0 for x = π

2
,

3π

2
.

Figure 5 shows that f ′′(x) changes sign at x = π
2 and 3π

2 , so f has a point of inflection
at both points.

EXAMPLE 3 Points of Inflection and Intervals of Concavity Find the points of in-
flection and the intervals on which f (x) = 3x5 − 5x4 + 1 is concave up and concave
down.

Solution The first derivative is f ′(x) = 15x4 − 20x3 and

f ′′(x) = 60x3 − 60x2 = 60x2(x − 1)

The zeros of f ′′(x) = 60x2(x − 1) are x = 0 and x = 1. They divide the x-axis into three

y = f ´´(x)

y = f (x)

2

f ´´(x) does not
change sign

No point of
inflection

Point of
inflection

f ´´(x)
changes sign

2

1

1−2

−2

y

x

x

y

FIGURE 6 Graph of f (x) = 3x5 − 5x4 + 1
and its second derivative.

intervals: (−∞, 0), (0, 1), and (1, ∞). We determine the sign of f ′′(x) and the concavity
of f by computing test values within each interval (Figure 6):

Interval Test value Sign of f ′′(x) Behavior of f (x)

(−∞, 0) f ′′(−1) =−120 − Concave down

(0, 1) f ′′( 1
2

) =− 15
2 − Concave down

(1, ∞) f ′′(2) = 240 + Concave up

Since the concavity changes at x = 1 there is an inflection point there. The inflection
point is (1, −1). Note that, even though f ′′(0) = 0, there is not an inflection point at
x = 0 because the concavity does not change at x = 0.

Usually, we find the inflection points by solving f ′′(x) = 0. However, an inflection
point can also occur at a point (c, f (c)), where f ′′(c) does not exist.
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EXAMPLE 4 A Case Where the Second Derivative Does Not Exist Find the points of
inflection of f (x) = x5/3.

22 21 1

Point of

inflection

2

2

1

22

21

y

x

FIGURE 7 The concavity of f (x) = x5/3

changes at x = 0 even though f ′′(0) does
not exist.

Solution In this case, f ′(x) = 5
3 x2/3 and f ′′(x) = 10

9 x−1/3. Although f ′′(0) does not
exist, f ′′(x) does change sign at x = 0:

f ′′(x) = 10

9x1/3

{

> 0 for x > 0

< 0 for x < 0

Therefore, the concavity of f changes at x = 0, and (0, 0) is a point of inflection
(Figure 7).

GRAPHICAL INSIGHT Points of inflection are easy to spot on the graph of the first
derivative f ′. If f ′′(c) = 0 and f ′′(x) changes sign at x = c, then the increas-
ing/decreasing behavior of f ′ changes at x = c:

• If f ′′(x) goes from positive to negative at x = c, then f ′ has a local max at x = c.
• If f ′′(x) goes from negative to positive at x = c, then f ′ has a local min at x = c.

Thus, inflection points of f occur where f ′ has a local min or max (Figure 8).y

y

y

x

(x) changes sign

Local

max

of

Local min

of

y 5 f (x)

y 5 (x)

y 5 (x)

x

x

''f

''f

'f

'f'f

FIGURE 8

Second Derivative Test for Critical Points

There is a simple test for critical points based on concavity. Suppose that f ′(c) = 0. As
we see in Figure 9, f (c) is a local max if f is concave down, and it is a local min
if f is concave up. Concavity is determined by the sign of f ′′(x), so we obtain the
Second Derivative Test in Theorem 3. (See Exercise 73 for a detailed proof.)

y

x

y

x
c

Concave down—local max

(c) > 0

c

Concave up—local min

(c) < 0

y 5 f (x) y 5 f (x)

''f ''f

FIGURE 9 Concavity determines the type of the critical point.

THEOREM 3 Second Derivative Test Let c be a critical point of f (x). If f ′′(c) exists,
then

• f ′′(c) > 0 ⇒ f (c) is a local minimum.
• f ′′(c) < 0 ⇒ f (c) is a local maximum.
• f ′′(c) = 0 ⇒ inconclusive: f (c) may be a local min, a local max, or neither.

Mnemonic Device:

''

(c) > 0 ⇒ local min

f

''f

(c) < 0 ⇒ local max

1 1

2 2

FIGURE 10

The mnemonic device appearing in Figure 10 provides an easy way to remember the
test.

EXAMPLE 5 Analyze the critical points of f (x) = (2x − x2)ex .

Solution First, we have

f ′(x) = ex (2 − 2x) + (2x − x2)ex = (2 − x2)ex
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To find the critical points, solve (2 − x2)ex = 0. Therefore c = ±√
2. Next, determine

the sign of the second derivative at the critical points:

f ′′(x) = (−2x)ex + (2 − x2)ex = (2 − 2x − x2)ex

f ′′(−
√

2) = (

2 − 2(−
√

2) − (−
√

2)2)e−√
2 = 2

√
2e−√

2 > 0 (local min)

f ′′(
√

2) = (

2 − 2
√

2 − (
√

2)2)e
√

2 = −2
√

2e
√

2 < 0 (local max)

By the Second Derivative Test, f has a local min at x = −√
2 and a local max at x = √

2

f (x) 5 (2x 2 x2)ex

Local max

(      < 0)

2   2

y

x
2

3.4

21.2

''f

Local min

(      > 0)''f

FIGURE 11
(Figure 11).

EXAMPLE 6 Second Derivative Test Inconclusive Analyze the critical points of
f (x) = x5 − 5x4.

Solution The first two derivatives are

f ′(x) = 5x4 − 20x3 = 5x3(x − 4)

f ′′(x) = 20x3 − 60x2

The critical points are c = 0, 4, and the Second Derivative Test yields

f ′′(0) = 0 ⇒ Second Derivative Test fails

f ′′(4) = 320 > 0 ⇒ f (4) is a local min

The Second Derivative Test fails at x = 0, so we fall back on the First Derivative Test.
Choosing test points to the left and right of x = 0, we find

f ′(−1) = 5 + 20 = 25 > 0 ⇒ f ′(x) is positive on (−∞, 0)

f ′(1) = 5 − 20 = −15 < 0 ⇒ f ′(x) is negative on (0, 4)

Since f ′(x) changes from + to − at x = 0, f (0) is a local max (Figure 12).

4

f (x) 5 x5 2 5x4

x

y

2256

FIGURE 12

4.4 SUMMARY
• A differentiable function f is concave up on (a, b) if f ′ is increasing and concave

down if f ′ is decreasing on (a, b).
• The signs of the first two derivatives provide the following information:

First derivative Second derivative

f ′ > 0 ⇒ f is increasing f ′′ > 0 ⇒ f is concave up
f ′ < 0 ⇒ f is decreasing f ′′ < 0 ⇒ f is concave down

• A point of inflection is a point (c, f (c)) where the concavity changes from concave up
to concave down, or vice versa.

• Second Derivative Test: If f ′(c) = 0 and f ′′(c) exists, then

– f (c) is a local maximum value if f ′′(c) < 0
– f (c) is a local minimum value if f ′′(c) > 0
– The test fails if f ′′(c) = 0

If this test fails, use the First Derivative Test.
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4.4 EXERCISES

Preliminary Questions
1. If f is concave up, then f ′ is (choose one)
(a) increasing (b) decreasing

2. What conclusion can you draw if f ′(c) = 0 and f ′′(c) < 0?

3. True or false? If f (c) is a local min, then f ′′(c) must be positive.

4. True or false? If f ′′(c) = 0, then f has an inflection point at x = c.

5. The function f (x) = x2+1
x is concave down for x < 0 and concave up

for x > 0. Is there an inflection point at x = 0? Explain.

6. Can a function have an inflection point at a critical point? Explain.

Exercises
1. Match the graphs in Figure 13 with the description:

(a) f ′′(x) < 0 for all x . (b) f ′′(x) goes from + to −.

(c) f ′′(x) > 0 for all x . (d) f ′′(x) goes from − to +.

(A) (B) (C) (D)

FIGURE 13

2. Match each statement with a graph in Figure 14 that represents com-
pany profits as a function of time.

(a) The outlook is great: The growth rate keeps increasing.

(b) We’re losing money, but not as quickly as before.

(c) We’re losing money, and it’s getting worse as time goes on.

(d) We’re doing well, but our growth rate is leveling off.

(e) Business had been cooling off, but now it’s picking up.

(f) Business had been picking up, but now it’s cooling off.

(i) (ii) (iii) (iv) (v) (vi)

FIGURE 14

3. GU Plot f (x) = (2x − x2)ex and indicate on the graph where it
appears that inflection points occur. Then find the inflection points using
calculus.

4. GU Plot f (x) = x(x − 4)3 and indicate on the graph where it ap-
pears that inflection points occur. Then find the inflection points using
calculus.

In Exercises 5–24, determine the intervals on which the function is concave
up or down and find the points of inflection.

5. y = x2 − 4x + 3 6. y = t3 − 6t2 + 4

7. y = 10x3 − x5 8. y = 5x2 + x4

9. y = θ − 2 sin θ , [0, 2π ] 10. y = θ + sin2 θ , [0,π ]

11. y = x(x − 8
√

x) (x ≥ 0) 12. y = x7/2 − 35x2

13. y = (x − 2)(1 − x3) 14. y = x7/5

15. y = 1

x2 + 3
16. y = x

x2 + 9

17. f (x) = x3

1 + x
18. w(t) = t4 − 1

t

19. y = xe−3x 20. y = (x2 − 7)ex

21. y = 2x2 + ln x (x > 0) 22. y = x − ln x (x > 0)

23. f (t) = te−t2

24. The Surge Function S(t) = Ate−kt , with A, k > 0

25. The position of an ambulance in kilometers on a straight road over a
period of 4 hours is given by the graph in Figure 15.

(a) Describe the motion of the ambulance.

(b) Explain what the fact that this graph is concave up tells us about the
speed of the ambulance.

4
t

100

y

FIGURE 15

26. The position of a bicyclist on a straight road in kilometers over a pe-
riod of 4 h is given by the graph in Figure 16, where inflection points occur
when t = 0.5 and t = 2.

(a) Describe the motion of the bicyclist.

(b) Explain what the concavity of the graph over various intervals tells us
about the speed of the bicyclist.

3 4210.5
t

30

25

20

15

10

5

y

FIGURE 16
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27. The growth of a sunflower during the first 100 days after sprout-
ing is modeled well by the logistic curve y = h(t) shown in Figure 17. Es-
timate the growth rate at the point of inflection and explain its significance.
Then make a rough sketch of the first and second derivatives of h.

20 40 60 80 100

50

100

150

200

250

t  (days)

Height (cm)

FIGURE 17

28. Assume that Figure 18 is the graph of f . Where do the points of in-
flection of f occur, and on which interval is f concave down?

gecba d f

y

x

FIGURE 18

29. Repeat Exercise 28 but assume that Figure 18 is the graph of the
derivative f ′.

30. Repeat Exercise 28 but assume that Figure 18 is the graph of the sec-
ond derivative f ′′.

31. Figure 19 shows the derivative f ′ on [0, 1.2]. Locate the points of in-
flection of f and the points where the local minima and maxima occur.
Determine the intervals on which f has the following properties:

(a) Increasing (b) Decreasing

(c) Concave up (d) Concave down

1.210.17 0.640.4

y 5    (x)

y

x

'f

FIGURE 19

32. Leticia has been selling solar-powered laptop chargers through her
Web site, with monthly sales as recorded below. In a report to investors,
she states, “Sales reached a point of inflection when I started using pay-
per-click advertising.” In which month did that occur? Explain.

Month 1 2 3 4 5 6 7 8

Sales 2 30 50 60 90 150 230 340

In Exercises 33–46, find the critical points and apply the Second Deriva-
tive Test (or state that it fails).

33. f (x) = x3 − 12x2 + 45x 34. f (x) = x4 − 8x2 + 1

35. f (x) = 3x4 − 8x3 + 6x2 36. f (x) = x5 − x3

37. f (x) = x2 − 8x

x + 1
38. f (x) = 1

x2 − x + 2

39. y = 6x3/2 − 4x1/2 40. y = 9x7/3 − 21x1/2

41. f (x) = sin2 x + cos x , [0,π ]

42. y = 1

sin x + 4
, [0, 2π ]

43. f (x) = xe−x2
44. f (x) = e−x − 4e−2x

45. f (x) = x3 ln x (x > 0)

46. f (x) = ln x + ln(4 − x2), (0, 2)

In Exercises 47–62, find the intervals on which f is concave up or down,
the points of inflection, the critical points, and the local minima and
maxima.

47. f (x) = x3 − 2x2 + x 48. f (x) = x2(x − 4)

49. f (t) = t2 − t3 50. f (x) = 2x4 − 3x2 + 2

51. f (x) = x2 − 8x1/2 (x ≥ 0)

52. f (x) = x3/2 − 4x−1/2 (x > 0)

53. f (x) = x

x2 + 27
54. f (x) = 1

x4 + 1

55. f (x) = x5/3 − x 56. f (x) = (x − 1)3/5

57. f (θ ) = θ + sin θ , [0, 2π ] 58. f (x) = cos2 x , [0,π ]

59. f (x) = tan x ,
(− π

2 , π2
)

60. f (x) = e−x cos x ,
[− π

2 , 3π
2

]

61. y = (x2 − 2)e−x (x > 0) 62. y = ln(x2 + 2x + 5)

63. Sketch the graph of an increasing function such that f ′′(x) changes
from + to − at x = 2 and from − to + at x = 4. Do the same for a
decreasing function.

In Exercises 64–66, sketch the graph of a function f satisfying all of the
given conditions.

64. f ′(x) > 0 and f ′′(x) < 0 for all x

65. (i) f ′(x) > 0 for all x , and

(ii) f ′′(x) < 0 for x < 0 and f ′′(x) > 0 for x > 0

66. (i) f ′(x) < 0 for x < 0 and f ′(x) > 0 for x > 0, and

(ii) f ′′(x) < 0 for |x | > 2, and f ′′(x) > 0 for |x | < 2
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67. An infectious flu spreads slowly at the beginning of an epi-
demic. The infection process accelerates until a majority of the susceptible
individuals are infected, at which point the process slows down.

(a) If R(t) is the number of individuals infected at time t , describe the
concavity of the graph of R near the beginning and end of the epidemic.
(b) Describe the status of the epidemic on the day that R has a point of
inflection.

68. Water is pumped into a sphere at a constant rate (Figure 20). Let
h(t) be the water level at time t . Sketch the graph of h (approximately, but
with the correct concavity). Where does the point of inflection occur?

69. Water is pumped into a sphere of radius R at a variable rate in
such a way that the water level rises at a constant rate (Figure 20). Let V (t)
be the volume of water in the tank at time t . Sketch the graph V (approxi-
mately, but with the correct concavity). Where does the point of inflection
occur?

h
R

FIGURE 20

70. (Continuation of Exercise 69) If the sphere has radius R, the volume
of water is

V = π
(

Rh2 − 1

3
h3),

where h is the water level. Assume the level rises at a constant rate of 1
(i.e., h = t).

(a) Find the inflection point of V . Does this agree with your conclusion
in Exercise 69?

(b) GU Plot V for R = 1.

71. Image Processing The intensity of a pixel in a digital image is mea-
sured by a number u between 0 and 1. Often, images can be enhanced
by rescaling intensities, as in the images of Amelia Earhart in Figure 21.
When rescaling, pixels of intensity u are displayed with intensity g(u) for
a suitable function g. One common choice is the sigmoidal correction,
defined for constants a, b by

g(u) = f (u) − f (0)

f (1) − f (0)
, where f (u) = (

1 + eb(a−u))−1

Original Sigmoidal correction
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FIGURE 21

Figure 22 shows that g(u) reduces the intensity of low-intensity pixels
[where g(u) < u] and increases the intensity of high-intensity pixels.

(a) Verify that f ′(u) > 0 and use this to show that g(u) increases from 0
to 1 for 0 ≤ u ≤ 1.

(b) Where does g(u) have a point of inflection?

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

y 5 g(u)

y 5 u

u

y

FIGURE 22 Sigmoidal correction with
a = 0.47, b = 12.

72. Use graphical reasoning to determine whether the following
statements are true or false. If false, modify the statement to make it
correct.

(a) If f is increasing, then f −1 is decreasing.

(b) If f is decreasing, then f −1 is decreasing.

(c) If f is concave up, then f −1 is concave up.

(d) If f is concave down, then f −1 is concave up.

Further Insights and Challenges
In Exercises 73–75, assume that f is differentiable.

73. Proof of the Second Derivative Test Let c be a critical point such
that f ′′(c) > 0 [the case f ′′(c) < 0 is similar].

(a) Show that f ′′(c) = lim
h→0

f ′(c + h)

h
.

(b) Use (a) to show that there exists an open interval (a, b) containing c
such that f ′(x) < 0 if a < x < c and f ′(x) > 0 if c < x < b. Conclude
that f (c) is a local minimum.

74. Prove that if f ′′ exists and f ′′(x) > 0 for all x , then the graph
of f “sits above” its tangent lines.

(a) For any c, set G(x) = f (x) − f ′(c)(x − c) − f (c). It is sufficient to
prove that G(x) ≥ 0 for all c. Explain why with a sketch.

(b) Show that G(c) = G ′(c) = 0 and G ′′(x) > 0 for all x . Conclude that
G ′(x) < 0 for x < c and G ′(x) > 0 for x > c. Then deduce, using the
MVT, that G(x) > G(c) for x �= c.

75. Assume that f ′′ exists and let c be a point of inflection
of f .

(a) Use the method of Exercise 74 to prove that the tangent line at
x = c crosses the graph (Figure 23). Hint: Show that G(x) changes sign
at x = c.

(b) GU Verify this conclusion for f (x) = x

3x2 + 1
by graphing f and

the tangent line at each inflection point on the same set of axes.
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FIGURE 23 Tangent line crosses graph at point of inflection.

76. Let C(x) be the cost of producing x units of a certain good. Assume
that the graph of C is concave up.
(a) Show that the average cost A(x) = C(x)/x is minimized at the pro-
duction level x0 such that average cost equals marginal cost—that is,
A(x0) = C ′(x0).
(b) Show that the line through (0, 0) and (x0, C(x0)) is tangent to the graph
of C .

77. Let f be a polynomial of degree n ≥ 2. Show that f has at least one
point of inflection if n is odd. Then give an example to show that f need
not have a point of inflection if n is even.

78. Critical and Inflection Points If f ′(c) = 0 and f (c) is neither a lo-
cal min nor a local max, must x = c be a point of inflection? This is true
for “reasonable” functions (including the functions studied in this text), but
it is not true in general. Let

f (x) =
{

x2 sin 1
x for x �= 0

0 for x = 0

(a) Use the limit definition of the derivative to show that f ′(0) exists and
f ′(0) = 0.

(b) Show that f (0) is neither a local min nor a local max.

(c) Show that f ′(x) changes sign infinitely often near x = 0. Conclude
that x = 0 is not a point of inflection.

4.5 L’Hôpital’s Rule

L’Hôpital’s Rule is a valuable tool for computing certain limits that are otherwise difficult
to evaluate, and also for determining “asymptotic behavior” (limits at infinity). We will
use it for graph sketching in the next section.

Consider the limit of a quotient:

L’Hôpital’s Rule is named for the French
mathematician Guillaume François Antoine
Marquis de L’Hôpital (1661–1704), who
wrote the first textbook on calculus in
1696. The name L’Hôpital is pronounced
“Lo-pee-tal.”

lim
x→a

f (x)

g(x)

Roughly speaking, L’Hôpital’s Rule states that when f (x)/g(x) has an indeterminate
form of type 0/0 or ∞/∞ at x = a, then we can replace f (x)/g(x) by the quotient of the
derivatives f ′(x)/g′(x).

THEOREM 1 L’Hôpital’s Rule Assume that f and g are differentiable on an open
interval containing a and that

f (a) = g(a) = 0

Also assume that g′(x) �= 0 (except possibly at a). Then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the limit on the right exists or is infinite (∞ or −∞). This conclusion also holds if
f and g are differentiable for x near (but not equal to) a and

lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞

Furthermore, this rule is valid for one-sided limits.

EXAMPLE 1 Use L’Hôpital’s Rule to evaluate lim
x→2

x3 − 8

x4 + 2x − 20
.

CAUTION When using L’Hôpital’s Rule, be
sure to take the derivative of the numerator
and denominator separately:

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Do not take the derivative of the function
y = f (x)/g(x) as a quotient, for example
using the Quotient Rule.

Solution Let f (x) = x3 − 8 and g(x) = x4 + 2x − 20. Both f and g are differentiable
and f (x)/g(x) is indeterminate of type 0/0 at a = 2 because f (2) = g(2) = 0.
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Furthermore, g′(x) = 4x3 + 2 is nonzero near x = 2, so L’Hôpital’s Rule applies.
We may replace the numerator and denominator by their derivatives to obtain

lim
x→2

x3 − 8

x4 + 2x − 2
= lim

x→2

(x3 − 8)′

(x4 + 2x − 2)′
︸ ︷︷ ︸

L’Hôpital’s Rule

= lim
x→2

3x2

4x3 + 2
= 3(22)

4(23) + 2
= 12

34
= 6

17

EXAMPLE 2 Evaluate lim
x→π/2

cos2 x

1 − sin x
.

Solution Again, the quotient is indeterminate of type 0/0 at x = π
2 since

cos2
(π

2

)

= 0, 1 − sin
π

2
= 1 − 1 = 0

The other hypotheses are satisfied, so we may apply L’Hôpital’s Rule:

lim
x→π/2

cos2 x

1 − sin x
= lim

x→π/2

(cos2 x)′

(1 − sin x)′
︸ ︷︷ ︸

L’Hôpital’s Rule

= lim
x→π/2

−2 cos x sin x

− cos x
= lim

x→π/2
(2 sin x)

︸ ︷︷ ︸

Simplified

= 2

Note that the quotient
−2 cos x sin x

− cos x
is also indeterminate at x = π/2. We removed this

indeterminacy by cancelling the factor − cos x .

EXAMPLE 3 The Form 0 · ∞ Evaluate lim
x→0+

x ln x .

Solution This limit is one-sided because f (x) = x ln x is not defined for x ≤ 0. Further-
more, as x → 0+,

• x approaches 0.
• ln x approaches −∞.

So f (x) presents an indeterminate form of type 0 · ∞. To apply L’Hôpital’s Rule, we
rewrite our function as f (x) = (ln x)/x−1 so that f (x) presents an indeterminate form of
type −∞/∞. Then L’Hôpital’s Rule applies:

lim
x→0+

x ln x = lim
x→0+

ln x

x−1
= lim

x→0+
(ln x)′

(x−1)′
︸ ︷︷ ︸

L’Hôpital’s Rule

= lim
x→0+

( x−1

−x−2

)

= lim
x→0+

(−x)
︸ ︷︷ ︸

Simplified

= 0

EXAMPLE 4 Using L’Hôpital’s Rule Twice Evaluate lim
x→0

ex − x − 1

cos x − 1
.

Solution The limit is in the indeterminate form 0/0 since at x = 0, we have

ex − x − 1 = e0 − 0 − 1 = 0, cos x − 1 = cos 0 − 1 = 0

A first application of L’Hôpital’s Rule gives

lim
x→0

ex − x − 1

cos x − 1
= lim

x→0

(ex − x − 1)′

(cos x − 1)′
= lim

x→0

(
ex − 1

− sin x

)

= lim
x→0

1 − ex

sin x

This limit is again indeterminate of type 0/0, so we apply L’Hôpital’s Rule a second
time:

lim
x→0

1 − ex

sin x
= lim

x→0

−ex

cos x
= −e0

cos 0
= −1

It follows that

lim
x→0

ex − x − 1

cos x − 1
= −1
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EXAMPLE 5 Maximum Height Under Air Resistance In Example 7 in Section 2.5
we introduced a function

H (k) =
30k − 9.8 ln

(
150k

49 + 1
)

k2

that gives the maximum height attained by a one kilogram ball launched upward at 30 m/s
with gravity and air resistance acting on it. (The function is derived in Section 9.2.) The
variable k reflects the strength of the air resistance. We investigated what happens to the
maximum height as the air resistance approaches zero; that is, we investigated lim

k→0
H (k)

numerically. Show this limit can be evaluated using L’Hôpital’s Rule and find the limit.

Solution The quotient
30k−9.8 ln

(
150k

49 +1
)

k2 has the indeterminate form 0/0. To evaluate the

limit, we need to use L’Hôpital’s Rule twice:

lim
k→0

30k − 9.8 ln
(

150k
49 + 1

)

k2
= lim

k→0

30 − 30
150k

49 +1

2k
= lim

k→0

4500/49
(

150k
49 +1

)2

2
= 2250

49
≈ 45.92

This value of 45.92 m matches our previous numerical estimate and the result we
obtained separately in Example 7 in Section 3.4 where we considered the launched pro-
jectile’s height, ignoring air resistance altogether.

EXAMPLE 6 Assumptions Matter Can L’Hôpital’s Rule be applied to lim
x→1

x2 + 1

2x + 1
?

Solution The answer is no. The function does not have an indeterminate form because

x2 + 1

2x + 1

∣
∣
∣
∣
x=1

= 12 + 1

2 · 1 + 1
= 2

3

This limit can be evaluated directly by substitution: lim
x→1

x2 + 1

2x + 1
= 2

3
. An incorrect ap-

plication of L’Hôpital’s Rule gives the wrong answer:

lim
x→1

(x2 + 1)′

(2x + 1)′
= lim

x→1

2x

2
= 1 (not equal to original limit)

EXAMPLE 7 The Form ∞ − ∞ Evaluate lim
x→0

(
1

sin x
− 1

x

)

.

Solution Both 1/ sin x and 1/x become infinite at x = 0, so we have an indeterminate
form of type ∞ − ∞. We rewrite the function as

1

sin x
− 1

x
= x − sin x

x sin x

to obtain an indeterminate form of type 0/0. Applying L’Hôpital’s Rule twice yields

lim
x→0

(
1

sin x
− 1

x

)

= lim
x→0

x − sin x

x sin x
= lim

x→0

1 − cos x

x cos x + sin x
︸ ︷︷ ︸

L’Hôpital’s Rule

= lim
x→0

sin x

−x sin x + 2 cos x
︸ ︷︷ ︸

L’Hôpital’s Rule again

= 0

2
= 0

This value of the limit is confirmed graphically in Figure 1.

x
1 2-1

0.5 y 5 2
1

sin x
1

x

y

FIGURE 1 The graph confirms that

y = 1

sin x
− 1

x
approaches 0 as x → 0.

Limits of functions of the form f (x)g(x) can lead to the indeterminate forms 00, 1∞,
or ∞0. These are indeterminate since the limit can take on a variety of values, depending
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on the relative rates at which the base and exponent approach their limits. In evaluating
these limits, we use the change-of-base formula to write f (x)g(x) = eg(x) ln f (x) and thenREMINDER The change-of-base

formula, changing an exponential base a to
base e, is ar = er ln a .

we obtain

lim
x→a

f (x)g(x) = lim
x→a

eg(x) ln f (x) = e
lim
x→a

g(x) ln f (x)

The last equality is justified by the continuity of the exponential function.

EXAMPLE 8 The Form 00 Evaluate lim
x→0+

xx .

Solution With xx = ex ln x by the change-of-base formula, it will be enough to consider
the limit of x ln x . Example 3 showed lim

x→0+
x ln x = 0. Therefore,

x

y

1 2

4

2

1

3 y = xx

FIGURE 2 The function y = xx approaches
1 as x → 0+.

lim
x→0+

xx = lim
x→0+

ex ln x = e
lim

x→0+ x ln x = e0 = 1

This value for the limit is confirmed graphically in Figure 2.

In Section 1.6, we pointed out that e is the value that (1 + x)1/x approaches as x
approaches 0. This can be verified now by evaluating lim

x→0
(1 + x)1/x using L’Hôpital’s

Rule.

EXAMPLE 9 The Form 1∞ Find lim
x→0

(1 + x)1/x .

Solution This has the indeterminate form 1∞. We take the approach used in Example 8.

Thus, we write (1 + x)1/x = e
1
x ln(1+x) and consider lim

x→0

1
x ln(1 + x). We obtain (using

L’Hôpital’s Rule for the first equality)

lim
x→0

ln(1 + x)

x
= lim

x→0

1
1+x

1
= 1

Therefore,

lim
x→0

(1 + x)1/x = lim
x→0

e
1
x ln(1+x) = e

lim
x→0

ln(1+x)
x = e1 = e

Note that if we substitute x = 1
t into lim

t→∞

(

1 + 1
t

)t
we obtain the limit in the pre-

vious example. Therefore lim
t→∞

(

1 + 1
t

)t = e. It is important to be familiar with these

limits whose values are e:

e = lim
x→0

(1 + x)1/x and e = lim
t→∞

(

1 + 1

t

)t

They arise in limit evaluations that we will see subsequently in the text.

CONCEPTUAL INSIGHT Exponential Limit Forms Knowing that 0 · ∞ is an indeterminate
form, and using the exponential identity ax = ex ln a , we can see why 00, 1∞, and ∞0

are indeterminate forms. A similar approach also shows why 0∞ is not indeterminate
and corresponds to a limit that equals 0.
The Form 00: If lim

x→a
f (x)g(x) is in the form 00, then f (x) → 0 and g(x) → 0. There-

fore, in the limit, the equivalent exponential expression eg(x) ln f (x) has an exponent in
the indeterminate form 0(−∞) since g(x) → 0 and ln f (x) → −∞ (because f (x) →
0). Therefore, 00 is an indeterminate form.

Similar arguments can be made to demonstrate that 1∞ and ∞0 are indeterminate
forms (see Exercise 61).
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The Form 0∞: If lim
x→a

f (x)g(x) is in the form 0∞, then f (x) → 0 and g(x) → ∞.

Therefore, in the limit, the equivalent exponential expression eg(x) ln f (x) has an expo-
nent in the form (∞)(−∞). Since the limit of the exponent is −∞, it follows that the
limit of eg(x) ln f (x) is 0, and therefore the limit of f (x)g(x) is as well. Thus, the form
0∞ is not indeterminate but instead corresponds to a limit that is equal to 0.

Comparing Growth of Functions
Sometimes, we are interested in determining which of two given functions grows faster.
For example, Quick Sort and Bubble Sort are two standard computer algorithms for sort-
ing data (e.g., alphabetizing, ordering according to rank). The average time required to
sort a list of size n is approxiamtely n ln n for Quick Sort and n2 for Bubble Sort. Which
algorithm is faster when the size n is large? This problem amounts to comparing the
growth of Q(x) = x ln x and B(x) = x2 as x → ∞.

We say that f (x) grows faster than g(x) if

lim
x→∞

f (x)

g(x)
= ∞ or, equivalently, lim

x→∞
g(x)

f (x)
= 0

To indicate that f (x) grows faster than g(x), we use the notation g(x) � f (x). For ex-
ample, x � x2 because

lim
x→∞

x2

x
= lim

x→∞ x = ∞

To compare the growth of functions, we need a version of L’Hôpital’s Rule that applies
to limits at infinity.

THEOREM 2 L’Hôpital’s Rule for Limits at Infinity Assume that f and g are differ-
entiable in an interval (b, ∞) and that g′(x) �= 0 for x > b. If lim

x→∞ f (x) and lim
x→∞ g(x)

exist and either both are zero or both are infinite, then

lim
x→∞

f (x)

g(x)
= lim

x→∞
f ′(x)

g′(x)

provided that the limit on the right exists. A similar result holds for limits as x → −∞.

EXAMPLE 10 The Form
∞
∞ Which of B(x) = x2 or Q(x) = x ln x grows faster as

x → ∞?

Solution Both B(x) and Q(x) approach infinity as x → ∞, so L’Hôpital’s Rule applies
to the quotient:

lim
x→∞

B(x)

Q(x)
= lim

x→∞
x2

x ln x
= lim

x→∞
x

ln x
= lim

x→∞
1

x−1
︸ ︷︷ ︸

L’Hôpital’s Rule

= lim
x→∞ x = ∞

We conclude that x ln x � x2 (Figure 3).

y

321 4

10

15

5

B(x) = x2

Q(x) = x ln x

x

FIGURE 3

Note that this example implies that Quick Sort is a much faster sorting algorithm
than Bubble Sort for large n.

In Section 1.6, we asserted that exponential functions increase more rapidly than
the power functions. We now prove this by showing that xn � ex for every exponent n
(Figure 4).
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THEOREM 3 Growth of f (x) = ex

xn � ex for every exponent n

In other words, lim
x→∞

ex

xn
= ∞ for all n.

Proof We first prove the theorem for positive integers n.

lim
x→∞

ex

xn
= lim

x→∞
ex

nxn−1
= lim

x→∞
ex

n(n − 1)xn−2
= ... = lim

x→∞
ex

n

We applied L’Hôpital’s Rule n times, each time obtaining an indeterminate form ∞
∞ ,

until the last stage shown. In lim
x→∞

ex

n the numerator goes to ∞ and the denominator is

constant (relative to x). Therefore, that limit is infinite, implying that lim
x→∞

ex

xn = ∞ if n

is a positive integer.

1284

3,000,000

2,000,000

1,000,000

y 5 ex

y 5 x5

x

y

FIGURE 4 Graph illustrating that x5 � ex .

If n is any exponent, we can choose a natural number k such that k > n. It is easy
to see that xn � xk , and because we also have xk � en , it follows that xn � ex for all
exponents n.

Proof of L’Hôpital’s Rule
We prove L’Hôpital’s Rule here only in the first case of Theorem 1—namely, in the caseA full proof of L’Hôpital’s Rule, without

simplifying assumptions, is presented in a
supplement on the text’s Web site.

that f (a) = g(a) = 0. We also assume that f ′ and g′ are continuous at x = a and that
g′(a) �= 0. Then g(x) �= g(a) for x near a, but not equal to a, and

f (x)

g(x)
= f (x) − f (a)

g(x) − g(a)
=

f (x) − f (a)

x − a
g(x) − g(a)

x − a
By the Quotient Law for Limits and the definition of the derivative,

lim
x→a

f (x)

g(x)
=

lim
x→a

f (x) − f (a)

x − a

lim
x→a

g(x) − g(a)

x − a

= f ′(a)

g′(a)
= lim

x→a

f ′(x)

g′(x)

4.5 SUMMARY
• L’Hôpital’s Rule: Assume that f and g are differentiable near a and that

f (a) = g(a) = 0

Assume also that g′(x) �= 0 (except possibly at a). Then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)

provided that the limit on the right exists or is infinite (∞ or −∞).
• L’Hôpital’s Rule applies to indeterminate forms 0/0 and ±∞/∞. It can also apply to
limits in any of the forms 0 · ∞, ∞ − ∞, 00, 1∞, and ∞0 by converting the expres-
sion to one in either the form 0/0 or the form ±∞/∞.

• L’Hôpital’s Rule also applies to limits as x → ∞ or x → −∞.
• In comparing the growth rates of functions, we say that f (x) grows faster than g(x),
and we write g � f , if

lim
x→∞

f (x)

g(x)
= ∞
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4.5 EXERCISES

Preliminary Questions
1. What is wrong with applying L’Hôpital’s Rule to lim

x→0

x2 − 2x

3x − 2
?

2. Does L’Hôpital’s Rule apply to lim
x→a

f (x)g(x) if f (x) and g(x) both

approach ∞ as x → a?

3. What is wrong with saying, “To apply L’Hôpital’s Rule to the limit

lim
x→0

ln(1 − x)

x
, use the Quotient Rule to differentiate

ln(1 − x)

x
and then

take the limit.”

4. What is wrong with applying L’Hôpital’s Rule to lim
x→0+

x
1
x ?

5. What property of the function f (x) = ex allows us to say

lim
x→a

eg(x) = e
lim
x→a

g(x)
?

Exercises
In Exercises 1–10, evaluate the limit, using L’Hôpital’s Rule where it
applies.

1. lim
x→3

2x2 − 5x − 3

x − 4
2. lim

x→−5

x2 − 25

5 − 4x − x2

3. lim
x→4

x3 − 64

x2 + 16
4. lim

x→−1

x4 + 2x + 1

x5 − 2x − 1

5. lim
x→9

x1/2 + x − 6

x3/2 − 27
6. lim

x→3

√
x + 1 − 2

x3 − 7x − 6

7. lim
x→0

sin 4x

x2 + 3x + 1
8. lim

x→0

x3

sin x − x

9. lim
x→0

cos 2x − 1

sin 5x
10. lim

x→0

cos x − sin2 x

sin x

In Exercises 11–16, use L’Hôpital’s Rule to evaluate the limit.

11. lim
x→∞

9x + 4

3 − 2x
12. lim

x→−∞ x sin
1

x

13. lim
x→∞

ln x

x1/2
14. lim

x→∞
x

ex

15. lim
x→−∞

ln(x4 + 1)

x
16. lim

x→∞
x2

ex

In Exercises 17–54, evaluate the limit.

17. lim
x→1

√
8 + x − 3x1/3

x2 − 3x + 2
18. lim

x→4

[
1√

x − 2
− 4

x − 4

]

19. lim
x→−∞

3x − 2

1 − 5x
20. lim

x→∞
x2/3 + 3x

x5/3 − x

21. lim
x→−∞

7x2 + 4x

9 − 3x2
22. lim

x→∞
3x3 + 4x2

4x3 − 7

23. lim
x→1

(1 + 3x)1/2 − 2

(1 + 7x)1/3 − 2
24. lim

x→8

x5/3 − 2x − 16

x1/3 − 2

25. lim
x→0

sin 2x

sin 7x
26. lim

x→0

tan 4x

tan 5x

27. lim
x→0

tan x

x
28. lim

x→0

(

cot x − 1

x

)

29. lim
x→0

sin x − x cos x

x − sin x
30. lim

x→π/2

(

x − π

2

)

tan x

31. lim
x→0

cos(x + π
2 )

sin x
32. lim

x→0

x2

1 − cos x

33. lim
x→π/2

cos x

sin(2x)
34. lim

x→0

(
1

x2
− csc2 x

)

35. lim
x→π/2

(sec x − tan x) 36. lim
x→2

ex2 − e4

x − 2

37. lim
x→1

tan
(πx

2

)

ln x 38. lim
x→1

x(ln x − 1) + 1

(x − 1) ln x

39. lim
x→0

ex − 1

sin x
40. lim

x→1

ex − e

ln x

41. lim
x→0

e2x − 1 − x

x2
42. lim

x→∞
e2x − 1 − x

x2

43. lim
t→0+

(sin t)(ln t) 44. lim
x→∞ e−x (x3 − x2 + 9)

45. lim
x→0

ax − 1

x
(a > 0) 46. lim

x→∞ x1/x2

47. lim
x→1

(1 + ln x)1/(x−1) 48. lim
x→0+

xsin x

49. lim
x→0

(cos x)3/x2
50. lim

x→∞

(
x

x + 1

)x

51. lim
x→0

sin−1 x

x
52. lim

x→0

tan−1 x

sin−1 x

53. lim
x→1

tan−1 x − π
4

tan π
4 x − 1

54. lim
x→0+

ln x tan−1 x

55. Evaluate lim
x→π/2

cos mx

cos nx
, where m, n �= 0 are integers.

56. Evaluate lim
x→1

xm − 1

xn − 1
for any numbers m, n �= 0.

57. Evaluate each of the following limits.

(a) lim
x→∞

(

1 + 1

x

)x2

(b) lim
x→∞

(

1 + 1

x2

)x

58. Show that lim
x→∞

(

1 + r

x

)x = er .
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In Exercises 59–60, a ball is launched straight up in the air and is
acted on by air resistance and gravity as in Example 5. The function M
gives the maximum height that the projectile attains as a function of the
air resistance parameter k. In each case, determine the maximum height
as we let the air resistance term go to zero; that is, determine lim

k→0
M(k).

59. A ball with a mass of 1 kilogram is launched upward with an initial
velocity of 60 m/s, and

M(k) = 60k − 9.8 ln( 300k
49 + 1)

k2

(Compare with Exercises 37 in Section 2.5 and 29 in Section 3.4.)

60. A ball with a mass of 500 grams is launched upward with an initial
velocity of 30 m/s, and

M(k) = 15k − 2.45 ln( 300k
49 + 1)

k2

(Compare with Exercise 38 in Section 2.5.)

61. In each case, show that the form is indeterminate by showing that if

lim
x→c

f (x)g(x) has the form, then the limit in the exponent in e
lim
x→c

g(x) ln f (x)

has a known indeterminate form.

(a) 1∞

(b) ∞0

62. GU Can L’Hôpital’s Rule be applied to lim
x→0+

xsin(1/x)? Does a

graphical or numerical investigation suggest that the limit exists?

63. Let f (x) = x1/x for x > 0.

(a) Calculate lim
x→0+

f (x) and lim
x→∞ f (x).

(b) Find the maximum value of f and determine the intervals on which f
is increasing or decreasing.

64. (a) Use the results of Exercise 63 to prove that x1/x = c has
a unique solution if 0 < c ≤ 1 or c = e1/e, and has two solutions if
1 < c < e1/e, and no solutions if c > e1/e.

(b) GU Plot the graph of f (x) = x1/x and verify that it confirms the
conclusions of (a).

65. Determine whether f � g or g � f (or neither) for the functions
f (x) = log10 x and g(x) = ln x .

66. Show that (ln x)3 � x1/3 and (ln x)4 � x1/10.

67. Just as exponential functions are distinguished by their rapid rate
of increase, the logarithm functions grow particularly slowly. Show that
ln x � xa for all a > 0.

68. Show that (ln x)N � xa for all N and all a > 0.

69. Determine whether
√

x � e
√

ln x or e
√

ln x � √
x . Hint: Use the sub-

stitution u = ln x instead of L’Hôpital’s Rule.

70. Show that lim
x→∞ xne−x = 0 for all whole numbers n > 0.

71. Assumptions Matter Suppose f (x) = x(2 + sin x) and let
g(x) = x2 + 1.

(a) Show directly that lim
x→∞ f (x)/g(x) = 0.

(b) Show that lim
x→∞ f (x) = lim

x→∞ g(x) = ∞, but lim
x→∞ f ′(x)/g′(x) does

not exist.

Do (a) and (b) contradict L’Hôpital’s Rule? Explain.

72. Let H (b) = lim
x→∞

ln(1 + bx )

x
for b > 0.

(a) Show that H (b) = ln b if b ≥ 1.

(b) Determine H (b) for 0 < b ≤ 1.

73. Let G(b) = lim
x→∞(1 + bx )1/x .

(a) Use the result of Exercise 72 to evaluate G(b) for all b > 0.

(b) GU Verify your result graphically by plotting y = (1 + bx )1/x

together with the horizontal line y = G(b) for the values b = 0.25,
0.5, 2, 3.

74. Show that lim
t→∞ tke−t2 = 0 for all k. Hint: Compare with

lim
t→∞ tke−t = 0.

In Exercises 75–77, let

f (x) =
{

e−1/x2
for x �= 0

0 for x = 0

These exercises show that f has an unusual property: All of its derivatives
at x = 0 exist and are equal to zero.

75. Show that lim
x→0

f (x)

xk
= 0 for all k. Hint: Let t = x−1 and apply the

result of Exercise 74.

76. Show that f ′(0) exists and is equal to zero. Also, verify that f ′′(0)
exists and is equal to zero.

77. Show that for k ≥ 1 and x �= 0,

f (k)(x) = P(x)e−1/x2

xr

for some polynomial P(x) and some exponent r ≥ 1. Use the result of
Exercise 75 to show that f (k)(0) exists and is equal to zero for all k ≥ 1.

Further Insights and Challenges
78. Show that L’Hôpital’s Rule applies to lim

x→∞
x√

x2 + 1
but that it does

not help. Then evaluate the limit directly.

79. The Second Derivative Test for critical points fails if f ′′(c) = 0. This
exercise develops a Higher Derivative Test based on the sign of the first
nonzero derivative. Suppose that

f ′(c) = f ′′(c) = · · · = f (n−1)(c) = 0, but f (n)(c) �= 0

(a) Show, by applying L’Hôpital’s Rule n times, that

lim
x→c

f (x) − f (c)

(x − c)n
= 1

n!
f (n)(c)

where n! = n(n − 1)(n − 2) · · · (2)(1).

(b) Use (a) to show that if n is even, then f (c) is a local minimum if
f (n)(c) > 0 and is a local maximum if f (n)(c) < 0. Hint: If n is even, then
(x − c)n > 0 for x �= a, so f (x) − f (c) must be positive for x near c if
f (n)(c) > 0.
(c) Use (a) to show that if n is odd, then f (c) is neither a local minimum
nor a local maximum.

80. When a spring with natural frequency λ/2π is driven with a sinusoidal
force sin(ωt) with ω �= λ, it oscillates according to

y(t) = 1

λ2 − ω2

(

λ sin(ωt) − ω sin(λt)
)

Let y0(t) = lim
ω→λ

y(t).
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(a) Use L’Hôpital’s Rule to determine y0(t).
(b) Show that y0(t) ceases to be periodic and that its amplitude |y0(t)|
tends to ∞ as t → ∞ (the system is said to be in resonance; eventually,
the spring is stretched beyond its structural tolerance).

(c) CAS Plot y for λ = 1 and ω = 0.8, 0.9, 0.99, and 0.999. Do the
graphs confirm your conclusion in (b)?

81. We expended a lot of effort to evaluate lim
x→0

sin x

x
in

Chapter 2. Show that we could have evaluated it easily using
L’Hôpital’s Rule. Then explain why this method would involve circular
reasoning.

82. By a fact from algebra, if f , g are polynomials such that
f (a) = g(a) = 0, then there are polynomials f1, g1 such that

f (x) = (x − a) f1(x), g(x) = (x − a)g1(x)

Use this to verify L’Hôpital’s Rule directly for lim
x→a

f (x)/g(x).

83. Patience Required Use L’Hôpital’s Rule to evaluate and check
your answers numerically:

(a) lim
x→0+

(
sin x

x

)1/x2

(b) lim
x→0

(
1

sin2 x
− 1

x2

)

84. In the following cases, check that x = c is a critical point and use
Exercise 79 to determine whether f (c) is a local minimum or a local max-
imum.

(a) f (x) = x5 − 6x4 + 14x3 − 16x2 + 9x + 12 (c = 1)

(b) f (x) = x6 − x3 (c = 0)

4.6 Analyzing and Sketching Graphs of Functions

In this section, our goal is to study graphs of functions f using the information provided
by the first two derivatives f ′ and f ′′. You will see that you can acquire a good un-
derstanding of the properties of a graph without plotting a large number of points. Evan
though almost all graphs you may see are produced by computer (including, of course,
the graphs in this textbook), the tools of calculus provide information beyond the image
displayed on a computer. This information includes the exact locations of critical points
and inflection points, the rates of increase and decrease over the function’s domain, and
the concavity of the function.

Most graphs are made up of smaller arcs that have one of the four basic shapes,
corresponding to the four possible sign combinations of f ′ and f ′′ (Figure 1). Since f ′
and f ′′ can each have sign + or −, the sign combinations are

+ + + − − + −−

In this notation, the first sign refers to f ′ and the second sign to f ′′. For instance, −+
indicates that f ′(x) < 0 and f ′′(x) > 0. We use a slanted arrow over the first sign to
indicate whether the function is increasing or decreasing, and an upturned or downturned

over the second sign to indicate the concavity.

+
Concave

up

+
Increasing

–
Decreasing

–
Concave

down

– –

+ –

+ +

– +

– –

''f

'f

FIGURE 1 The four basic shapes.

In analyzing a graph, we focus on the transition points, where the basic shape
changes due to a sign change in either f ′ (local min or max) or f ′′ (point of inflec-
tion). In this section, local extrema are indicated by solid dots, and points of inflection
are indicated by green solid squares (Figure 2).

+ +− +− −+ −+ +− +

FIGURE 2 The graph of f with transition
points and sign combinations of f ′ and f ′′.

In examining the properties of a function, it is often useful to investigate the asymp-
totic behavior—that is, the behavior of f (x) as x approaches either ±∞ or a vertical
asymptote.

In the examples that follow, we use calculus to investigate the behavior of specific
functions, and then we use the information we gather to construct a picture of the func-
tion’s graph—that is, to “sketch the graph.” The first three examples treat polynomials.
Recall from Section 2.7 that the limits at infinity of a polynomial

f (x) = an xn + an−1xn−1 + · · · + a1x + a0

(assuming that an �= 0) are determined by

lim
x→∞ f (x) = an lim

x→∞ xn

In general, the graph of a polynomial oscillates up and down a finite number of times and
tends to positive or negative infinity as x tends to positive or negative infinity. Typical
examples appear in Figure 3.
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x x

(A) Degree 3, a
3
 > 0 (B) Degree 4, a

4
 > 0 (C) Degree 5, a

5
 < 0

x

yyy

FIGURE 3 Graphs of polynomials.

EXAMPLE 1 Quadratic Polynomial Investigate the behavior of f (x) = x2 − 4x + 3
and sketch its graph.

Solution Note that f (x) = (x − 1)(x − 3) so the graph intersects the x-axis at x = 1 and
x = 3. We have f ′(x) = 2x − 4 = 2(x − 2). We can see directly that f ′(x) is negative
for x < 2 and positive for x > 2, but let’s confirm this using test values, as in previous
sections:

Interval Test value Sign of f ′

(−∞, 2) f ′(1) = −2 −
(2, ∞) f ′(3) = 2 +

Furthermore, f ′′(x) = 2 is positive, so the graph is everywhere concave up. To sketch

Local min

− + + +

3

1 3

2

y

x

FIGURE 4 Graph of f (x) = x2 − 4x + 3.

the graph, plot the local minimum (2, −1), the y-intercept, and the roots x = 1, 3. Since
the leading term of f is x2, f (x) tends to ∞ as x → ±∞. This asymptotic behavior is
noted by the arrows in Figure 4.

EXAMPLE 2 Cubic Polynomial Investigate the behavior of the cubic function f (x) =
1
3 x3 − 1

2 x2 − 2x + 3 and sketch the graph.

Solution

Step 1. Determine the signs of f ′ and f ′′.
First, solve for the critical points:

f ′(x) = x2 − x − 2 = (x + 1)(x − 2)

The critical points are c = −1, 2, and they divide the x-axis into three intervals
(−∞, −1), (−1, 2), and (2, ∞), on which we determine the sign of f ′ by computing
test values:

Interval Test value Sign of f ′

(−∞, −1) f ′(−2) = 4 +
(−1, 2) f ′(0) = −2 −
(2, ∞) f ′(3) = 4 +

Next, f ′′(x) = 2x − 1, and therefore x = 1
2 is the only solution to f ′′(x) = 0. We

have

Interval Test value Sign of f ′′

(−∞, 1
2

)

f ′′(0) = −1 −
( 1

2 , ∞)

f ′′(1) = 1 +

Step 2. Note transition points and sign combinations.
This step merges the information about f ′ and f ′′ in a sign diagram (Figure 5). There

− −+ − + +− +

Local

min

Local

max

Inflection

point

21 0 21

2

x

FIGURE 5 Sign combinations of f ′ and f ′′.

are three transition points:

• c = −1: local max since f ′ changes from + to −.
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• c = 1
2 : corresponds to a point of inflection since f ′′ changes sign.

• c = 2: local min since f ′ changes from − to +.

In Figure 6(A), we plot the transition points and, for added accuracy, the y-intercept
f (0), using the values

f (−1) = 25

6
, f

(
1

2

)

= 23

12
, f (0) = 3, f (2) = −1

3

Step 3. Draw arcs of appropriate shape and asymptotic behavior.
The leading term of f (x) is 1

3 x3. Therefore, lim
x→∞ f (x) = ∞ and lim

x→−∞ f (x) = −∞.

To create the sketch, it remains only to connect the transition points by arcs of the
appropriate concavity and asymptotic behavior, as in Figure 6(B) and (C).

(A) (B) (C)

+ − − − − + + + + − − − − + + +

123 21

3

3123 21

3

xx

y

,( )1

2

23

12

21,( )25

6

1

3
2, 2( )

+ − − −

− + + +

y

FIGURE 6 Graph of
f (x) = 1

3 x3 − 1
2 x2 − 2x + 3.

EXAMPLE 3 Investigate the behavior of f (x) = 3x4 − 8x3 + 6x2 + 1 and sketch its
graph.

Solution

Step 1. Determine the signs of f ′ and f ′′.
First, solve for the transition points:

f ′(x) = 12x3 − 24x2 + 12x = 12x(x − 1)2, so f ′ = 0 ⇒ x = 0, 1

f ′′(x) = 36x2 − 48x + 12 = 12(x − 1)(3x − 1), so f ′′ = 0 ⇒ x = 1

3
, 1

The signs of f ′ and f ′′ are recorded in the following tables:

Interval Test value Sign of f ′

(−∞, 0) f ′(−1) = −48 −
(0, 1) f ′( 1

2

) = 3
2 +

(1, ∞) f ′(2) = 24 +

Interval Test value Sign of f ′′
( − ∞, 1

3

)

f ′′(0) = 12 +
( 1

3 , 1
)

f ′′( 1
2

) = −3 −
(1, ∞) f ′′(2) = 60 +

Step 2. Note transition points and sign combinations.
The transition points c = 0, 1

3 , 1 divide the x-axis into four intervals (Figure 7). The
10

+ −+ + + + − +

Inflection

point

Local

min

Inflection

point

x
1

3

FIGURE 7

type of sign change determines the nature of the transition point:

• c = 0: local min since f ′ changes from − to +.
• c = 1

3 : corresponds to a point of inflection since f ′′ changes sign.
• c = 1: neither a local min nor a local max since f ′ does not change sign, but
it is a point of inflection since f ′′(x) changes sign.

We plot the transition points c = 0, 1
3 , 1 in Figure 8(A) using function values

f (0) = 1, f
( 1

3

) = 38
27 , and f (1) = 2.
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Step 3. Draw arcs of appropriate shape and asymptotic behavior.
Before drawing the arcs, we note that f (x) has leading term 3x4, so f (x) tends to ∞
as x → ∞ and as x → −∞. We obtain Figure 8(B).

1

3

1

3
1−1

2

4

1−1

2

4

+ − + −+ + + ++ + + +− + − +

x x

y y

(A) (B)

Points of inflection

FIGURE 8 f (x) = 3x4 − 8x3 + 6x2 + 1.

EXAMPLE 4 Investigate the behavior of f (x) = cos x + 1
2 x over [0,π ], and sketch its

graph.

Solution First, we find the transition points for x in [0,π ]:

f ′(x) = − sin x + 1

2
, so f ′(x) = 0 ⇒ x = π

6
,

5π

6

f ′′(x) = − cos x , so f ′′(x) = 0 ⇒ x = π

2

The sign combinations are shown in the following tables:

Interval Test value Sign of f ′
(

0, π6
)

f ′( π
12

) ≈ 0.24 +
(
π
6 , 5π

6

)

f ′(π
2

) = − 1
2 −

( 5π
6 ,π

)

f ′( 11π
12

) ≈ 0.24 +

Interval Test value Sign of f ′′
(

0, π2
)

f ′′(π
4

) = −
√

2
2 −

(
π
2 ,π

)

f ′′( 3π
4

) =
√

2
2 +

We record the sign changes and transition points in Figure 9 and sketch the graph
using the values

1

0.5

+ − + +− +− −

x

y

π π

2
π

6
5π

6

FIGURE 9 f (x) = cos x + 1
2 x .

f (0) = 1, f
(π

6

)

≈ 1.13, f
(π

2

)

≈ 0.79, f

(
5π

6

)

≈ 0.44, f (π ) ≈ 0.57

EXAMPLE 5 Investigate the behavior of f (x) = xex and sketch its graph.

Solution As usual, we solve for the transition points and determine the signs:

f ′(x) = xex + ex = (x + 1)ex , so f ′(x) = 0 ⇒ x = −1

f ′′(x) = (x + 1)ex + ex = (x + 2)ex , so f ′′(x) = 0 ⇒ x = −2

Interval Test value
Sign
of f ′

(−∞, −1) f ′(−2) = −e−2 −
(−1, ∞) f ′(0) = e0 +

Interval Test value
Sign
of f ′′

( − ∞, −2
)

f ′′(−3) = −e−3 −
( − 2, ∞)

f ′′(0) = 2e0 +

The sign change of f ′ shows that f (−1) is a local min. The sign change of f ′′ shows
that f has a point of inflection at x = −2, where the graph changes from concave down
to concave up.

Copyright ©2019 W.H. Freeman Publishers. Distributed by W.H. Freeman Publishers. Not for redistribution. 



258 C H A P T E R 4 APPL ICAT IONS OF THE DER IVAT IVE

The last pieces of information we need are the limits at infinity. Both x and ex tend
− −

x

y

21

−1−2

1

−+ ++

FIGURE 10 Graph of f (x) = xex . The sign
combinations −−, −+, ++ indicate the
signs of f ′ and f ′′.

to ∞ as x → ∞, so lim
x→∞ xex = ∞. On the other hand, the limit as x → −∞ is indeter-

minate of type ∞ · 0 because x tends to −∞ and ex tends to zero. Therefore, we write
xex = x/e−x and apply L’Hôpital’s Rule:

lim
x→−∞ xex = lim

x→−∞
x

e−x
= lim

x→−∞
1

−e−x
= − lim

x→−∞ ex = 0

Figure 10 shows the graph with its local minimum and point of inflection, drawn with the
correct concavity and asymptotic behavior.

EXAMPLE 6 Investigate the behavior of f (x) = 3x + 2

2x − 4
and sketch its graph.

Solution The function f is not defined for all x . This plays a role in our analysis so we
add a Step 0 to our procedure.

Step 0. Determine the domain of f .
Since f (x) is not defined for x = 2, the domain of f consists of the two intervals
(−∞, 2) and (2, ∞). We must analyze f on these intervals separately.

Step 1. Determine the signs of f ′ and f ′′.
Calculation shows that

f ′(x) = − 4

(x − 2)2
, f ′′(x) = 8

(x − 2)3

Although f ′(x) is not defined at x = 2, it is not a critical point because x = 2 is not
in the domain of f . In fact, f ′(x) is negative for x �= 2, so f is decreasing and has no
critical points.

On the other hand, f ′′(x) > 0 for x > 2 and f ′′(x) < 0 for x < 2, so the con-
cavity of f changes at x = 2. However, there is not an inflection point at x = 2
because—as was the case above—x = 2 is not in the domain of f .

Step 2. Note transition points and sign combinations.
There are no transition points in the domain of f .

(−∞, 2) f ′(x) < 0 and f ′′(x) < 0
(2, ∞) f ′(x) < 0 and f ′′(x) > 0

Step 3. Draw arcs of appropriate shape and asymptotic behavior.
The following limits as x → ±∞, evaluated using L’Hôpital’s Rule, show that y = 3

2
is a horizontal asymptote:

lim
x→±∞

3x + 2

2x − 4
= lim

x→±∞
3

2
= 3

2

The line x = 2 is a vertical asymptote because f (x) has infinite one-sided limits

lim
x→2−

3x + 2

2x − 4
= −∞, lim

x→2+
3x + 2

2x − 4
= ∞

To verify this, note that for x near 2, the numerator 3x + 2 is positive while the de-
nominator 2x − 4 is small and negative for x < 2 and is small and positive for x > 2.
Figure 11(A) summarizes the asymptotic behavior.

Now, to the left of x = 2, the graph is decreasing [ f ′(x) < 0], is concave down
[ f ′′(x) < 0], and approaches the asymptotes. The x-intercept is x = − 2

3 because
f
( − 2

3

) = 0, and the y-intercept is y = f (0) = − 1
2 . We obtain the left part of the

graph as shown in Figure 11(B). To the right of x = 2, the graph is decreasing
[ f ′(x) < 0], is concave up [ f ′′(x) > 0], and approaches the asymptotes as shown.
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− −

3
2

3
2

(B)

2

(A)

Horizontal
asymptote

Vertical
asymptote

2

− −

− + − +

x x

y y

FIGURE 11 Graph of y = 3x + 2

2x − 4
.

EXAMPLE 7 A Logistic Function Analyze the behavior of P(x) = 50
1+2e−0.1x and

sketch the graph.

Solution The function P is defined for all x . With some careful calculation and simpli-
fication, we find that

P ′(x) = 10e−0.1x

(1 + 2e−0.1x )2
, P ′′(x) = e−0.1x (2e−0.1x − 1)

(1 + 2e−0.1x )3

First, note that P ′(x) is defined and positive for all x ; therefore P is increasing for
all x .

The sign of P ′′(x) is equal to the sign of 2e−0.1x − 1 because the denominator and
the other factor in the numerator are positive for all x . It follows that P ′′(x) = 0 when
2e−0.1x − 1 = 0. Solving for x :

2e−0.1x = 1

e−0.1x = 1

2

−0.1x = ln
1

2

x = −10 ln
1

2
= 10 ln 2

Thus, P ′′(x) = 0 at x = 10 ln 2 ≈ 6.93. Furthermore, P ′′(x) is positive to the left of
10 ln 2 and is negative to the right. Therefore there is an inflection point at x = 10 ln 2.

Figure 12 summarizes the sign information.
10 ln2

+ −+ +
x

FIGURE 12 Signs of P ′ and P ′′.

The lines P = 0 and P = 50 are horizontal asymptotes because

lim
x→∞

50

1 + 2e−0.1x
= 50 and lim

x→−∞
50

1 + 2e−0.1x
= 0

The graph of P increases away from the asymptote P = 0 and is concave up un-
til reaching x = 10 ln 2 ≈ 6.93. From that point on, it continues to increase but is con-
cave down and approaches the asymptote P = 50. Note that P(10 ln 2) = 25, so that at
the inflection point, we are at half of the limiting value 50. The graph is sketched in
Figure 13.

20 400−40 −20

50

25

y

x

FIGURE 13 The graph of the logistic
function P(x).

Properties that we observed for P in the previous example hold for general logistic
functions P(x) = M

1+Ae−kx for M , A, and k all positive. In particular (see Exercise 73):

• lim
x→−∞ P(x) = 0 and lim

x→∞ P(x) = M , so P has horizontal asymptotes at P = 0

and P = M .
• P is increasing for all x .
• There is an inflection point at

(
ln A

k , M
2

)

, and P is concave up to the left of the

inflection point, concave down to the right.
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If a logistic function is modeling a population, such as in Example 2 in Section 2.7, then
these properties show that the population increases at an increasing rate until it equals
half of the carrying capacity; beyond that, it continues to increase but at a decreasing
rate, approaching the carrying capacity in the long run.

4.6 SUMMARY
• Most graphs are made up of arcs that have one of the four basic shapes (Figure 14):

− −

+ −

+ +

− +

FIGURE 14 The four basic shapes.

Sign combination Curve type

++ f ′ > 0, f ′′ > 0 Increasing and concave up
+− f ′ > 0, f ′′ < 0 Increasing and concave down
−+ f ′ < 0, f ′′ > 0 Decreasing and concave up
−− f ′ < 0, f ′′ < 0 Decreasing and concave down

• A transition point is a point in the domain of f at which either f ′ changes sign (local
min or max) or f ′′ changes sign (point of inflection).

• It is convenient to break up the curve-sketching process into steps:

Step 0. Determine the domain of f .

Step 1. Determine the signs of f ′ and f ′′.
Step 2. Note transition points and sign combinations.

Step 3. Determine the asymptotic behavior of f (x).

Step 4. Draw arcs of appropriate shape and asymptotic behavior.

4.6 EXERCISES

Preliminary Questions
1. Sketch an arc where f ′ and f ′′ have the sign combination ++. Do the
same for −+.

2. If the sign combination of f ′ and f ′′ changes from ++ to +− at
x = c, then (choose the correct answer)

(a) f (c) is a local min.

(b) f (c) is a local max.

(c) (c, f (c)) is a point of inflection.

3. The second derivative of the function f (x) = (x − 4)−1 is
f ′′(x) = 2(x − 4)−3. Although f ′′(x) changes sign at x = 4, f does not
have a point of inflection at x = 4. Why not?

Exercises
1. Determine the sign combinations of f ′ and f ′′ for each interval A–G
in Figure 15.

CB D E F GA
x

y

y 5 f (x)

FIGURE 15

2. State the sign change at each transition point A–G in Figure 16.
Example: f ′(x) goes from + to − at A.

A
x

y

CB D E F G

y 5 f (x)

FIGURE 16

In Exercises 3–6, draw the graph of a function for which f ′ and f ′′ take
on the given sign combinations in order.

3. ++, +−, −− 4. +−, −−, −+

5. −+, −−, −+ 6. −+, ++, +−
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7. Sketch the graph of a function that could have the graphs of f ′ and f ′′
appearing in Figure 17.

x

y

y 5 f '(x)

1 2 3 4 5

x

y

y 5 f ''(x)

1 2 3 4 5

FIGURE 17

8. Sketch the graph of a function that could have the graphs of f ′ and f ′′
appearing in Figure 18.

x

y

y 5 f '(x)

1 2 3 4 5

x

y

y 5 f ''(x)

1 2 3 4 5

FIGURE 18

9. Investigate the behavior and sketch the graph of y = x2 − 5x + 4.

10. Investigate the behavior and sketch the graph of y = 12 − 5x − 2x2.

11. Investigate the behavior and sketch the graph of f (x) = x3 − 3x2 + 2.
Include the zeros of f , which are x = 1 and 1 ± √

3 (approximately
−0.73, 2.73).

12. Show that f (x) = x3 − 3x2 + 6x has a point of inflection but no local
extreme values. Sketch the graph.

13. Extend the sketch of the graph of f (x) = cos x + 1
2 x in Example 4 to

the interval [0, 5π ].

14. Investigate the behavior and sketch the graphs of y = x2/3 and
y = x4/3.

In Exercises 15–36, find the transition points, intervals of in-
crease/decrease, concavity, and asymptotic behavior. Then sketch the
graph, with this information indicated.

15. y = x3 + 24x2 16. y = x3 − 3x + 5

17. y = x2 − 4x3 18. y = 1
3 x3 + x2 + 3x

19. y = 4 − 2x2 + 1
6 x4 20. y = 7x4 − 6x2 + 1

21. y = x5 + 5x 22. y = x5 − 15x3

23. y = x4 − 3x3 + 4x 24. y = x2(x − 4)2

25. y = x7 − 14x6 26. y = x6 − 9x4

27. y = x − 4
√

x 28. y = √
x + √

16 − x

29. y = x(8 − x)1/3 30. y = (x2 − 4x)1/3

31. y = xe−x2
32. y = (2x2 − 1)e−x2

33. y = x − 2 ln x 34. y = x(4 − x) − 3 ln x

35. y = x2 − 2 ln x

36. y = x − 2 ln(x2 + 1)

37. Investigate the behavior and sketch the graph of the function f (x) =
18(x − 3)(x − 1)2/3 using the formulas

f ′(x) = 30
(

x − 9
5

)

(x − 1)1/3
, f ′′(x) = 20

(

x − 3
5

)

(x − 1)4/3

38. Investigate the behavior and sketch the graph of f (x) = x

x2 + 1
using

the formulas

f ′(x) = 1 − x2

(1 + x2)2
, f ′′(x) = 2x(x2 − 3)

(x2 + 1)3

CAS In Exercises 39–42, sketch the graph of the function, indicating all
transition points. If necessary, use a graphing utility or computer algebra
system to locate the transition points numerically.

39. y = x2 − 10 ln(x2 + 1) 40. y = e−x/2 ln x

41. y = x4 − 4x2 + x + 1

42. y = 2
√

x − sin x , 0 ≤ x ≤ 2π

In Exercises 43–48, sketch the graph over the given interval, with all tran-
sition points indicated.

43. y = x + sin x , [0, 2π ]

44. y = sin x + cos x , [0, 2π ]

45. y = 2 sin x − cos2 x , [0, 2π ]

46. y = sin x + 1
2 x , [0, 2π ]

47. y = sin x + √
3 cos x , [0,π ]

48. y = sin x − 1
2 sin 2x , [0,π ]

49. Are all sign transitions possible? Explain with a sketch why the
transitions ++ → −+ and −− → +− do not occur if the function is dif-
ferentiable. (See Exercise 80 for a proof.)

50. Suppose that f is twice differentiable satisfying (i) f (0) = 1,
(ii) f ′(x) > 0 for all x �= 0, and (iii) f ′′(x) < 0 for x < 0 and f ′′(x) > 0
for x > 0. Let g(x) = f (x2).

(a) Sketch a possible graph of f .
(b) Prove that g has no points of inflection and a unique local extreme
value at x = 0. Sketch a possible graph of g.

In Exercises 51–52, draw the graph of a function f having the given limits
at ±∞ and for which f ′ and f ′′ take on the given sign combinations in
order.

51. lim
x→−∞ f (x) = − ∞, lim

x→∞ f (x) = 0; +−, −−, −+, ++, +−

52. lim
x→−∞ f (x) = −1, lim

x→∞ f (x) = 1; ++, +−, −−, −+
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53. Match the graphs in Figure 19 with the two functions y = 3x

x2 − 1
and

y = 3x2

x2 − 1
. Explain.

(A) (B)

21 121 1
xx

y y

FIGURE 19

54. Match the functions below with their graphs in Figure 20.

(a) y = 1

x2 − 1
(b) y = x2

x2 + 1

(c) y = 1

x2 + 1
(d) y = x

x2 − 1

(A) (B)

(D)(C)

x
x

y y

xx

y y

FIGURE 20

In Exercises 55–72, sketch the graph of the function. Indicate the transition
points and asymptotes.

55. y = 1

3x − 1
56. y = x − 2

x − 3

57. y = x + 3

x − 2
58. y = x + 1

x

59. y = 1

x
+ 1

x − 1
60. y = 1

x
− 1

x − 1

61. y = 1

x(x − 2)
62. y = x

x2 − 9

63. y = 1

x2 − 6x + 8
64. y = x3 + 1

x

65. y = 1 − 3

x
+ 4

x3
66. y = 1

x2
+ 1

(x − 2)2

67. y = 1

x2
− 1

(x − 2)2
68. y = 4

x2 − 9

69. y = 1

(x2 + 1)2
70. y = x2

(x2 − 1)(x2 + 1)

71. y = 1√
x2 + 1

72. y = x√
x2 + 1

73. Consider the general logistic function, P(x) = M
1+Ae−kx , with A, M ,

and k all positive. Show that

(a) P ′(x) = M Ake−kx

(1+Ae−kx )2 and P ′′(x) = M Ak2e−kx (Ae−kx −1)
(1+Ae−kx )3

(b) lim
x→−∞ P(x) = 0 and lim

x→∞ P(x) = M , and therefore P = 0 and P =
M are horizontal asymptotes of P .

(c) P is increasing for all x .

(d) The only inflection point of P is at
(

ln A
k , M

2

)

. To the left of it P is

concave up, and to the right of it P is concave down.

74. Show that the function R(x) = M
π

(
π
2 + tan−1 x

)

, with M > 0, has
the following properties (similar to the general logistic function):

(a) lim
x→−∞ R(x) = 0 and lim

x→∞ R(x) = M , and therefore R = 0 and R =
M are horizontal asymptotes of R.

(b) R is increasing for all x .

(c) R has a single inflection point. The value of R at the inflection point
is M/2. To the left of the inflection point R is concave up, to the right R is
concave down.

Further Insights and Challenges
In Exercises 75–79, we explore functions whose graphs approach a non-
horizontal line as x → ∞. A line y = ax + b is called a slant asymptote if

lim
x→∞( f (x) − (ax + b)) = 0

or

lim
x→−∞( f (x) − (ax + b)) = 0

75. Let f (x) = x2

x − 1
(Figure 21). Verify the following:

(a) f (0) is a local max and f (2) a local min.

(b) f is concave down on (−∞, 1) and concave up on (1, ∞).

(c) lim
x→1−

f (x) = −∞ and lim
x→1+

f (x) = ∞.

(d) y = x + 1 is a slant asymptote of f as x → ±∞.
(e) The slant asymptote lies above the graph of f for x < 1 and below
the graph for x > 1.

y 5 x 1 1

10210

10

210

x

y
f (x) 5 x2

x 2 1

FIGURE 21
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76. If f (x) = P(x)/Q(x), where P and Q are polynomials of de-
grees m + 1 and m, then by long division, we can write

f (x) = (ax + b) + P1(x)/Q(x)

where P1 is a polynomial of degree < m. Show that y = ax + b is the
slant asymptote of f (x). Use this procedure to find the slant asymptotes of
the following functions:

(a) y = x2

x + 2
(b) y = x3 + x

x2 + x + 1
77. Sketch the graph of

f (x) = x2

x + 1

Proceed as in the previous exercise to find the slant asymptote.

78. Show that y = 3x is a slant asymptote for f (x) = 3x + x−2. Deter-
mine whether f (x) approaches the slant asymptote from above or below,
and make a sketch of the graph.

79. Sketch the graph of f (x) = 1 − x2

2 − x
.

80. Assume that f ′ and f ′′ exist for all x and let c be a critical point of f .
Show that f (x) cannot make a transition from ++ to −+ at x = c. Hint:
Apply the MVT to f ′(x).

81. Assume that f ′′ exists and f ′′(x) > 0 for all x . Show that f (x)
cannot be negative for all x . Hint: Show that f ′(b) �= 0 for some b and use
the result of Exercise 74 in Section 4.4.

4.7 Applied Optimization

Optimization plays a role in a wide range of disciplines, including the physical sciences,
economics, and biology. For example, scientists have studied howmigrating birds choose
an optimal velocity v that maximizes the distance D they can travel without stopping,
given the energy that can be stored as body fat (Figure 1).

10 20 30 40
   (m/s)

D(   ) (km)

200

150

100

50

FIGURE 1 Physiology and aerodynamics
are applied to obtain a plausible formula
for bird migration distance D as a function
of velocity v. The optimal velocity
corresponds to the maximum point on the
graph (see Exercise 69).

In many optimization problems, the first step is to write down the objective function.
This is the function whose minimum or maximum we seek. Once we find the objective
function, we can apply the techniques developed in this chapter. Our first examples re-
quire optimization on a closed interval [a, b]. Let’s recall the steps for finding extrema
developed in Section 4.2:

(i) Find the critical points of f in [a, b].

(ii) Evaluate f (x) at the critical points and the endpoints a and b.

(iii) The least and greatest values are the extreme values of f on [a, b].

EXAMPLE 1 A piece of wire of length L is bent into the shape of a rectangle (Figure 2).
Which dimensions produce the rectangle of maximum area?

xL

y 5    2 xL
2

FIGURE 2

Solution The rectangle has area A = xy, where x and y are the lengths of the sides.
Since A depends on two variables x and y, we cannot find the maximum until we elimi-
nate one of the variables. We can do this because the variables are related: The rectangle
has perimeter L = 2x + 2y, so y = 1

2 L − x . This allows us to rewrite the area in terms
An equation relating two or more
independent variables in an optimization
problem is called a constraint equation.
The idea is that we cannot assume the
variables take on any values we want;
instead they are constrained to satisfy a
specific equation. In Example 1, the
constraint equation is

2x + 2y = L

of x alone to obtain the objective function

A(x) = x

(
1

2
L − x

)

= 1

2
Lx − x2

On which interval does the optimization take place? The sides of the rectangle are non-
negative, so we require both x ≥ 0 and 1

2 L − x ≥ 0. Thus, 0 ≤ x ≤ 1
2 L . Our problem is

to maximize A(x) on the closed interval
[

0, 1
2 L

]

.

Copyright ©2019 W.H. Freeman Publishers. Distributed by W.H. Freeman Publishers. Not for redistribution. 



264 C H A P T E R 4 APPL ICAT IONS OF THE DER IVAT IVE

We have A′(x) = 1
2 L − 2x . Solving A′(x) = 0, we obtain just a single critical point,

x = 1
4 L . Comparing values of A, we find:

Endpoints: A(0) = 0

A

(
1

2
L

)

= 1

2
L

(
1

2
L − 1

2
L

)

= 0

Critical point: A

(
1

4
L

)

=
(

1

4
L

) (
1

2
L − 1

4
L

)

= 1

16
L2

The greatest value occurs for x = 1
4 L , and in this case, y = 1

2 L − 1
4 L = 1

4 L . The rect-
angle of maximum area is the square of sides x = y = 1

4 L .

EXAMPLE 2 Minimizing Travel Time Your task is to build a road joining the small
town of Calverton to Route 1 to enable drivers to reach Capital City in the shortest time
(Figure 3). How should this be done if the speed limit is 60 km/hour on the road and
110 km/h on Route 1? The perpendicular distance from Calverton to Route 1 is 30 km,
and Capital City is 50 km down Route 1.30

Calverton

Capital
City

P Q

x 50 2 x

50

302 + x2

FIGURE 3

Solution We will solve this problem in three steps. These steps can be helpful when
solving other optimization problems.

Step 1. Choose variables.
We need to determine the point Q where the road will join the Route 1. So let x be the
distance from Q to the point P where the perpendicular joins Route 1.

Step 2. Find the objective function and the interval.
Our objective function is the time T (x) of the trip as a function of x . To find a formula
for T (x), recall that distance traveled at constant velocity v is d = vt , and the time

required to travel a distance d is t = d/v. The road has length
√

302 + x2 by the
Pythagorean Theorem, so at velocity v = 60 km/h, it takes

√

302 + x2

60
hours to travel from Calverton to Q

The segment of Route 1 from Q to Capital City has length 50 − x . At velocity
v = 110 km/h, it takes

50 − x

110
h to travel from Q to the city

The total number of hours for the trip is

T (x) =
√

302 + x2

60
+ 50 − x

110

Our interval is 0 ≤ x ≤ 50 because the road joins Route 1 somewhere between P

19.52 50

0.5

1

T

x

FIGURE 4 Graph of time of trip as function
of x . and Capital City. So our task is to minimize T on [0, 50] (Figure 4).

Step 3. Optimize.
Solve for the critical points:

T ′(x) = x

60
√

302 + x2
− 1

110
= 0

110x = 60
√

302 + x2 ⇒ 11x = 6
√

302 + x2 ⇒

121x2 = 36(302 + x2) ⇒ 85x2 = 32,400 ⇒ x =
√

32,400/85 ≈ 19.52
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To find the minimum value of T , we compare the values of T (x) at the critical
point and the endpoints of [0, 50]:

T (0) ≈ 0.95 h, T (19.52) ≈ 0.87 h, T (50) ≈ 0.97 h

We conclude that the travel time is minimized if the road joins Route 1 at a distance
x ≈ 19.52 km along the highway from P .

EXAMPLE 3 Old Route 1 and Minimizing Travel Time We revisit the situation in
Example 2, considering a different pair of speeds along the road and Route 1. Suppose
that Route 1 is old and in disrepair and we cannot expect to travel faster than 70 km/hour
on it. Furthermore, assume that the new road will be designed for travel at 80 km/h. Now,
how should the road be laid out in relation to Route 1?

Solution Intuitively it seems clear that we should have the road go straight from Calver-
ton to Capital City, completely avoiding Route 1. We will work out the solution and see
how this case compares with the previous example. Taking the same approach used in
the previous example, we find that the task is to determine the minimum of

T (x) =
√

900 + x2

80
+ 50 − x

70

over the interval [0, 50].
In this case, T has no critical points (see Exercise 19). Thus, the minimum of T must

50

0.4

T

x

0.8

1.2

FIGURE 5 In this case T (x) has no critical
points in [0, 50].

occur at one of the endpoints (Figure 5). We have T (0) ≈ 1.09 h, and T (50) ≈ 0.73 h.
So the minimum of T over [0, 50] occurs at x = 50. Therefore, to minimize the time of
the trip, the road should go directly from Calverton to Capital City, confirming our initial
intuitive analysis.

In Example 2, the minimum occurred at an x between 0 and 50, and in Example 3, it
occurred at x = 50. It is natural to ask whether there is a combination of speeds along the
road and Route 1 so that the minimum occurs at x = 0? The answer is no (see Exercise
19). By choosing the Route 1 speed large enough in relation to the road speed, it is
possible to have the minimum of T occur at a critical point as close as you like to x = 0,
but there is no combination of speeds that results in a minimum at exactly x = 0.

EXAMPLE 4 Optimal Price All units in a 30-unit apartment building are rented out
when the rent is set at r = $2000 per month. A survey reveals that for each $100 increase
in rent, demand for apartments will decrease, such that one additional apartment becomes
vacant. Suppose that each occupied unit costs $200 per month in maintenance. Which
rent r maximizes monthly profit?

Solution

Step 1. Choose variables.
Our goal is to maximize the total monthly profit P . Let r be the monthly rent and let
N (r ) be the number of occupied units when the rent is set at r .

Step 2. Find the objective function and the interval.
Since one unit becomes vacant with each $100 increase in rent above $2000, we find
that (r − 2000)/100 units are vacant when r > 2000. Therefore,

N (r ) = 30 − 1

100
(r − 2000) = 50 − 1

100
r

Total monthly profit is equal to the number of occupied units times the profit per unit,
which is r − 200 (because each unit costs $200 in maintenance), so

P(r ) = N (r )(r − 200) =
(

50 − 1

100
r
)

(r − 200) = −10,000 + 52r − 1

100
r2
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Which interval of r -values should we consider? There is no reason to lower the rent
below r = 2000 because all units are already occupied when r = 2000. On the other
hand, for the upper limit of r we take the rent at which no units are occupied; that is,
the r for which N (r ) = 0. That occurs at r = 100 · 50 = 5000. Therefore, we consider
P(r ) over the interval 2000 ≤ r ≤ 5000.

Step 3. Optimize.
Solve for the critical points:

P ′(r ) = 52 − 1

50
r so P ′(r ) = 0 ⇒ r = 2600

and compare values at the critical point and the endpoints:

P(2000) = 54,000, P(2600) = 62,400, P(5000) = 0

We conclude that the profit is maximized when the rent is set at r = $2600. In this
case, 24 units are occupied. Note that if the maximum profit had occurred at a price
that gave us a fractional number of units occupied, we could not have achieved that
maximum. Instead, we would have taken the price corresponding to rounding the frac-
tional number up or down to the integer number of units that maximized our profit.

Open Versus Closed Intervals
In contrast to the case of a closed interval, when optimizing a function over an open

ba c
x

y

FIGURE 6 A function with a minimum but
no maximum over the open interval (a, b).

interval, there is no guarantee that a min or max exists. For example, in Figure 6, a
minimum exists at x = c but there is no maximum value. As we approach the endpoint
at b, the function values increase, but there is no maximumum because b is not included
in the interval (and furthermore the function is not defined there).

If a min or max does exist on an open interval, then it must occur at a critical point
(because it is also a local min or max).

With a closed interval, to search for a min and max, we need to evaluate the function
at the endpoints of the interval. With an open interval, we need to examine the behavior
of the function as x approachs the endpoints of the interval in order to make conclusions
about the existence (or lack thereof) of max values and min values. For example, if f (x)
tends to infinity at the endpoints, then there is no maximum, and a minimum must occur
at a critical point somewhere in the interval. We consider such a situation in the next
example.

EXAMPLE 5 Design a cylindrical can of volume 900 cm3 so that it uses the least amount
of metal (Figure 7). In other words, minimize the surface area of the can (including its
top and bottom).

h

r

DF FIGURE 7 Cylinders with the same
volume but different surface areas.

Solution

Step 1. Choose variables.
We want to find the radius and the height of the can with minimum surface area.
Therefore, we let r be the radius and h the height. Furthermore, we denote the surface
area of the can by A.
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Step 2. Find the objective function and the interval.
We express A as a function of r and h:

A = πr2
︸︷︷︸

Top

+ πr2
︸︷︷︸

Bottom

+ 2πrh
︸ ︷︷ ︸

Side

= 2πr2 + 2πrh

The can’s volume is V = πr2h. Since we require that V = 900 cm3, we have the
constraint equation πr2h = 900. Thus, h = (900/π )r−2 and

A(r ) = 2πr2 + 2πr

(
900

πr2

)

= 2πr2 + 1800

r

The radius r can take on any positive value, so we minimize A(r ) on (0, ∞).

Step 3. Optimize the function.
Observe that A(r ) tends to infinity as r approaches the endpoints of (0, ∞):

5 10 15 20
Radius r

Surface area A

500

1000

FIGURE 8 Surface area increases as r tends
to 0 or ∞. The minimum value exists.

• A(r ) → ∞ as r → ∞ (because of the r2 term).
• A(r ) → ∞ as r → 0 (because of the 1/r term).

Therefore, A(r ) must take on a minimum value at a critical point in (0, ∞) (Figure 8).
We solve in the usual way:

d A

dr
= 4πr − 1800

r2
= 0 ⇒ r3 = 450

π
⇒ r =

(
450

π

)1/3

≈ 5.23 cm

We also need to calculate the height:

h = 900

πr2
= 2

(
450

π

)

r−2 = 2

(
450

π

) (
450

π

)−2/3

= 2

(
450

π

)1/3

≈ 10.46 cm

Since we have a single critical point in our interval, it follows that we obtain the
minimum of A there. Thus, the minimum surface area occurs when a can has radius
approximately 5.23 cm and height approximately 10.46 cm. Notice that the optimal

In the case of a single critical point, as we
have here, a second method for proving
that the point corresponds to a minimum is
to apply the First Derivative Test. Since
A′(r ) < 0 for r <

(
450
π

)1/3
and A′(r ) > 0

for r >
(

450
π

)1/3
, the critical point must be

a local minimum and as the only critical
point, the global minimum. A third method
would be to apply the Second Derivative
Test to show this is a local minimum and
therefore, as the only extreme point, the
global minimum. dimensions satisfy h = 2r . In other words, the optimal can is as tall as it is wide.

EXAMPLE 6 Optimization Problem with No Solution Is it possible to design a cylin-
der of volume 900 cm3 with the largest possible surface area?

Solution The answer is no. In the previous example, we showed that a cylinder of vol-
ume 900 cm3 and radius r has surface area

A(r ) = 2πr2 + 1800

r

This function has no maximum value because it tends to infinity as r → 0 or r → ∞
(Figure 8). This means that a cylinder of fixed volume has a large surface area if it is
either very fat and short (r large) or very tall and skinny (r small).

The Principle of Least Distance states that a light beam reflected in a mirror travelsThe Principle of Least Distance is also
called Heron’s Principle after the
mathematician Heron of Alexandria
(c. 100 CE). See Exercise 81 for an
elementary proof that does not use
calculus and would have been known to
Heron. Exercise 56 develops Snell’s Law, a
more general optical law based on the
Principle of Least Time.

along the shortest path. More precisely, a beam traveling from A to B, as in Figure 9, is
reflected at the point P for which the path APB has minimum length. In the next example,
we show that this minimum occurs when the angle of incidence is equal to the angle of
reflection, that is, θ1 = θ2.

EXAMPLE 7 Show that if P is the point for which the path APB in Figure 9 has minimal
length, then θ1 = θ2.

Solution By the Pythagorean Theorem, the path APB has length

f (x) = AP + P B =
√

x2 + h2
1 +

√

(L − x)2 + h2
2
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A

B

h1

h2

L  2 xx

L

P

DF FIGURE 9 Reflection of a light beam in
a mirror.

with x , h1, and h2 as in the figure. The function f is defined for all x and tends to infinity
as x approaches ±∞ (i.e., as P moves arbitrarily far to the right or left). It follows that
f has an absolute minimum value, and it must occur at a critical point (see Figure 10).

10 20 30 40

25

50

y

x

FIGURE 10 Graph of path length for
h1 = 10, h2 = 20, L = 40.

Taking the derivative:

f ′(x) = x
√

x2 + h2
1

− L − x
√

(L − x)2 + h2
2

1

Since f ′(x) is defined for all x , critical points occur where f ′(x) = 0. It is not necessary
to solve for x because our goal is not to find critical points, but rather to show that θ1 = θ2
at the minimum. To do this, we set the derivative equal to 0 in Eq. (1) and rewrite as

x
√

x2 + h2
1

= L − x
√

(L − x)2 + h2
2

2

Note that the critical point x that satisfies Eq. (2) must lie between 0 and L because no
x < 0 can satisfy this equation (otherwise, we would have a negative value on the left and
a positive on the right) and no x > L can satisfy this equation (for similar reasons). Since
the critical point x lies in [0, L] we can associate angles θ1 and θ2 with x as in Figure 9.
We claim that θ1 = θ2. To see this, observe that with θ1 and θ2 as pictured, we have

cos θ1 = x
√

x2 + h2
1

and cos θ2 = L − x
√

(L − x)2 + h2
2

Therefore, Eq. (2) implies that cos θ1 = cos θ2, and since θ1 and θ2 lie between 0 and π
2 ,

we conclude that θ1 = θ2 as claimed.

CONCEPTUAL INSIGHT Often, a maximum or minimum at a critical point represents the
best compromise between “competing factors.” In Example 4, we maximized profit
by finding the best compromise between raising the rent and keeping the apartment
units occupied. In Example 5, our solution minimizes surface area by finding the best
compromise between height and radius. In Example 2, the solution represents a com-
promise between the slower speed on the road that leads to Route 1 and the faster speed
along Route 1. On the other hand, in Example 3, since there is no compromise, a solu-
tion occurs at an endpoint of the interval rather than at a critical point. The faster speed
along the road yields a road straight to the city, avoiding Route 1 altogether.

4.7 SUMMARY
• There are usually three main steps in solving an applied optimization problem:

Step 1. Choose variables.
Determine which quantities are relevant, often by drawing a diagram, and assign
appropriate variables.

Step 2. Find the objective function and the interval.
Restate as an optimization problem for a function f over an interval. If f depends
on more than one variable, use a constraint equation to write f as a function of
just one variable.
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Step 3. Optimize the objective function.

• If the interval is open, f does not necessarily take on a minimum or maximum value.
But if it does, these must occur at critical points within the interval. To determine if
a min or max exists, analyze the behavior of f as x approaches the endpoints of the
interval.

4.7 EXERCISES

Preliminary Questions
1. The problem is to find the right triangle of perimeter 10 whose area is
as large as possible. What is the constraint equation relating the base b and
height h of the triangle?

2. Describe a way of showing that a continuous function on an open in-
terval (a, b) has a minimum value.

3. Is there a rectangle of area 100 of largest perimeter? Explain.

Exercises
1. Find the dimensions x and y of the rectangle of maximum area that
can be formed using 3 m of wire.

(a) What is the constraint equation relating x and y?

(b) Find a formula for the area in terms of x alone.

(c) What is the interval of optimization? Is it open or closed?

(d) Solve the optimization problem.

2. Wire of length 12 m is divided into two pieces and each piece is bent
into a square. How should this be done in order to minimize the sum of the
areas of the two squares?

(a) Express the sum of the areas of the squares in terms of the lengths x
and y of the two pieces.

(b) What is the constraint equation relating x and y?

(c) What is the interval of optimization? Is it open or closed?

(d) Solve the optimization problem.

3. A rectangular bird sanctuary is being created with one side along a
straight riverbank. The remaining three sides are to be enclosed with a
protective fence. If there are 12 km of fence available, find the dimension
of the rectangle to maximize the area of the sanctuary.

4. The rectangular bird sanctuary with one side along a straight river is
to be constructed so that it contains 8 km2 of area. Find the dimensions
of the rectangle to minimize the amount of fence necessary to enclose the
remaining three sides.

5. Find two positive real numbers such that the sum of the first number
squared and the second number is 48 and their product is a maximum.

6. Find two positive real numbers such that they sum to 108 and the
product of the first times the square of the second is a maximum.

7. A wire of length 12 m is divided into two pieces and the pieces are
bent into a square and a circle. How should this be done in order to mini-
mize the sum of their areas?

8. Find the positive number x such that the sum of x and its reciprocal is
as small as possible. Does this problem require optimization over an open
interval or a closed interval?

9. Find two positive real numbers such that they add to 40 and their prod-
uct is as large as possible.

10. Find two positive real numbers x and y such that they add to 120 and
x2 y is as large as possible.

11. Find two positive real numbers x and y such that their product is 800
and x + 2y is as small as possible.

12. A flexible tube of length 4 m is bent into an L-shape. Where should
the bend be made to minimize the distance between the two ends?

13. Find the dimensions of the box with square base with

(a) Volume 12 and the minimal surface area.

(b) Surface area 20 and maximal volume.

14. A jewelry box with a square base is to be built with copper-plated
sides, nickel-plated bottom and top, and a volume of 40 cm3. If nickel
plating costs $2 per cm2 and copper plating costs $1 per cm2, find the
dimensions of the box to minimize the cost of the materials.

15. A rancher will use 600 m of fencing to build a corral in the shape of
a semicircle on top of a rectangle (Figure 11). Find the dimensions that
maximize the area of the corral.

FIGURE 11

16. What is the maximum area of a rectangle inscribed in a right triangle
with legs of length 3 and 4 as in Figure 12? The sides of the rectangle are
parallel to the legs of the triangle.

3

5 4

FIGURE 12
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17. Find the dimensions of the rectangle of maximum area that can be
inscribed in a circle of radius r = 4 (Figure 13).

r

FIGURE 13

18. Find the dimensions x and y of the rectangle inscribed in a circle of
radius r that maximizes the quantity xy2.

19. In the setting of Examples 2 and 3, let r denote the speed along the
road, and h denote the speed along the highway.
(a) Show that the travel-time function T (x) has a critical point at

x = 30
√

(h/r )2 − 1

and explain why this indicates that if r ≥ h there is no critical point.
(b) Explain why there cannot be a critical point at x = 0, but depending
on the speeds, the critical point can be arbitrarily close to 0.

20. In the setting of Examples 2 and 3, replace 30 and 50 with general
distances D and L , respectively. Also, let r denote the speed along the
road, and h denote the speed along the highway. Show that the travel-time
function T (x) has a critical point at

x = D
√

(h/r )2 − 1
.

21. In the article “Do Dogs Know Calculus?” the author Timothy Pen-
nings explained how he noticed that when he threw a ball diagonally into
Lake Michigan along a straight shoreline, his dog Elvis seemed to pick
the optimal point in which to enter the water so as to minimize his time
to reach the ball, as in Figure 14. He timed the dog and found Elvis could
run at 6.4 m/s on the sand and swim at 0.91 m/s. If Tim stood at point A
and threw the ball to a point B in the water, which was a perpendicular
distance 10 m from point C on the shore, where C is a distance 15 m from
where he stood, at what distance x from point C did Elvis enter the water
if the dog effectively minimized his time to reach the ball?

x
A D C

B

15

10

FIGURE 14

22. A four-wheel-drive vehicle is transporting an injured hiker to the hos-
pital from a point that is 30 km from the nearest point on a straight road.
The hospital is 50 km down that road from that nearest point. If the vehicle
can drive at 30 kph over the terrain and at 120 kph on the road, how far
down the road should the vehicle aim to reach the road to minimize the
time it takes to reach the hospital?

23. Find the point on the line y = x closest to the point (1, 0). Hint: It is
equivalent and easier to minimize the square of the distance.

24. Find the point P on the parabola y = x2 closest to the point (3, 0)
(Figure 15).

3
x

y

P
y 5 x2

FIGURE 15

25. CAS Find a good numerical approximation to the coordinates of
the point on the graph of y = ln x − x closest to the origin (Figure 16).

x

y

y 5 ln x 2 x

FIGURE 16

26. Problem of Tartaglia (1500–1557) Among all positive numbers
a, b whose sum is 8, find those for which the product of the two numbers
and their difference is largest.

27. Find the angle θ that maximizes the area of the isosceles triangle
whose legs have length � (Figure 17), using the fact the area is given by
A = 1

2 �
2 sin θ .

FIGURE 17

28. A right circular cone (Figure 18) has volume

V = π

3
r2h

and surface area S = πr
√

r2 + h2. Find the dimensions of the cone with
surface area 1 and maximal volume.

r

h

FIGURE 18
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29. Find the area of the largest isosceles triangle that can be inscribed in a
circle of radius 1 (Figure 19).

(x, y)

1 x

y

FIGURE 19

30. Find the radius and height of a cylindrical can of total surface area A
whose volume is as large as possible. Does there exist a cylinder of surface
area A and minimal total volume?

31. A poster of area 6000 cm2 has blank margins of width 10 cm on the
top and bottom and 6 cm on the sides. Find the dimensions that maximize
the printed area.

32. According to postal regulations, a carton is classified as “oversized” if
the sum of its height and girth (perimeter of its base) exceeds 108 in. Find
the dimensions of a carton with a square base that is not oversized and has
maximum volume.

33. Kepler’s Wine Barrel Problem In his work Nova stereometria do-
liorum vinariorum (New Solid Geometry of a Wine Barrel), published in
1615, astronomer Johannes Kepler stated and solved the following prob-
lem: Find the dimensions of the cylinder of largest volume that can be
inscribed in a sphere of radius R. Hint: Show that an inscribed cylinder
has volume 2πx(R2 − x2), where x is one-half the height of the cylinder.

34. Find the angle θ that maximizes the area of the trapezoid with a base
of length 4 and sides of length 2, as in Figure 20.

4

2 2

FIGURE 20

35. A landscape architect wishes to enclose a rectangular garden of area
1000 m2 on one side by a brick wall costing $90/m and on the other three
sides by a metal fence costing $30/m. Which dimensions minimize the to-
tal cost?

36. The amount of light reaching a point at a distance r from a light source
A of intensity IA is IA/r2. Suppose that a second light source B of in-
tensity IB = 4IA is located 10 m from A. Find the point on the segment
joining A and B where the total amount of light is at a minimum.

37. Find the maximum area of a rectangle inscribed in the region bounded

by the graph of y = 4 − x

2 + x
and the axes (Figure 21).

2

4

y 5 4 2 x
2 1 x

x

y

FIGURE 21

38. Find the maximum area of a triangle formed by the axes and a tangent
line to the graph of y = (x + 1)−2 with x > 0.

39. Find the maximum area of a rectangle circumscribed around a rect-
angle of sides L and H . Hint: Express the area in terms of the angle θ
(Figure 22).

H

L

FIGURE 22

40. A contractor is engaged to build steps up the slope of a hill that has the

shape of the graph of y = x2(120 − x)

6400
for 0 ≤ x ≤ 80 with x in meters

(Figure 23). What is the maximum vertical rise of a stair if each stair has a
horizontal length of 1

3 m?

20 40 60 80

20

40

y

x

FIGURE 23

41. Find the equation of the line through P = (4, 12) such that the triangle
bounded by this line and the axes in the first quadrant has minimal area.

42. Let P = (a, b) lie in the first quadrant. Find the slope of the line
through P such that the triangle bounded by this line and the axes in the
first quadrant has minimal area. Then show that P is the midpoint of the
hypotenuse of this triangle.

43. Archimedes’s Problem A spherical cap (Figure 24) of radius r and
height h has volume V = πh2

(

r − 1
3 h

)

and surface area S = 2πrh. Prove
that the hemisphere encloses the largest volume among all spherical caps
of fixed surface area S.

r

h

FIGURE 24

44. Find the isosceles triangle of smallest area (Figure 25) that circum-
scribes a circle of radius 1 (from Thomas Simpson’s The Doctrine and
Application of Fluxions, a calculus text that appeared in 1750).
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1

FIGURE 25

45. A box of volume 72 m3 with a square bottom and no top is constructed
out of two different materials. The cost of the bottom is $40/m2 and the cost
of the sides is $30/m2. Find the dimensions of the box that minimize total
cost.

46. Find the dimensions of a cylinder of volume 1 m3 of minimal cost if
the top and bottom are made of material that costs twice as much as the
material for the side.

47. Your task is to design a rectangular industrial warehouse consisting of
three separate spaces of equal size as in Figure 26. The wall materials cost
$500 per linear meter and your company allocates $2,400,000 for that part
of the project involving the walls.
(a) Which dimensions maximize the area of the warehouse?
(b) What is the area of each compartment in this case?

FIGURE 26

48. Suppose, in the previous exercise, that the warehouse consists of n
separate spaces of equal size. Find a formula in terms of n for the maxi-
mum possible area of the warehouse.

49. According to a model developed by economists E. Heady and
J. Pesek, if fertilizer made from N pounds of nitrogen and P lb of phos-
phate is used on an acre of farmland, then the yield of corn (in bushels per
acre) is

Y = 7.5 + 0.6N + 0.7P − 0.001N 2 − 0.002P2 + 0.001N P

A farmer intends to spend $30/acre on fertilizer. If nitrogen costs
25 cents/lb and phosphate costs 20 cents/lb, which combination of N and
P produces the highest yield of corn?

50. Experiments show that the quantities x of corn and y of soybean re-
quired to produce a hog of weight Q satisfy Q = 0.5x1/2 y1/4. The unit of
x , y, and Q is the cwt, an agricultural unit equal to 100 lb. Find the values
of x and y that minimize the cost of a hog of weight Q = 2.5 cwt if corn
costs $3/cwt and soy costs $7/cwt.

51. All units in a 100-unit apartment building are rented out when the
monthly rent is set at r = $900/month. Suppose that one unit becomes
vacant with each $10 increase in rent and that each occupied unit costs
$80/mon in maintenance. Which rent r maximizes monthly profit?

52. An 8-billion-bushel corn crop brings a price of $2.40/bushel. A com-
modity broker uses the rule of thumb: If the crop is reduced by x percent,
then the price increases by 10x cents. Which crop size results in maximum
revenue and what is the price per bushel? Hint: Revenue is equal to price
times crop size.

53. The monthly output of a Spanish light bulb factory is P = 2L K 2 (in
millions), where L is the cost of labor and K is the cost of equipment

(in millions of euros). The company needs to produce 1.7 million units per
month. Which values of L and K would minimize the total cost L + K ?

54. The rectangular plot in Figure 27 has size 100 m × 200 m. Pipe is to
be laid from A to a point P on side BC and from there to C . The cost of
laying pipe along the side of the plot is $45/m and the cost through the plot
is $80/m (since it is underground).
(a) Let f (x) be the total cost, where x is the distance from P to B. De-
termine f (x), but note that f is discontinuous at x = 0 (when x = 0, the
cost of the entire pipe is $45/m).
(b) What is the most economical way to lay the pipe? What if the cost
along the sides is $65/m?

100

200

200 2 x

A

B P C
x

FIGURE 27

55. Brandon is on one side of a river that is 50 m wide and wants to reach
a point 200 m downstream on the opposite side as quickly as possible by
swimming diagonally across the river and then running the rest of the way.
Find the best route if Brandon can swim at 1.5 m/s and run at 4 m/s.

56. Snell’s Law When a light beam travels from a point A above a
swimming pool to a point B below the water (Figure 28), it chooses the
path that takes the least time. Let v1 be the velocity of light in air and
v2 the velocity in water (it is known that v1 > v2). Prove Snell’s Law of
Refraction:

sin θ1

v1
= sin θ2

v2

A

h1 1

2

B

h2

FIGURE 28

57. Vascular Branching A small blood vessel of radius r branches off
at an angle θ from a larger vessel of radius R to supply blood along a path
from A to B. According to Poiseuille’s Law, the total resistance to blood
flow is proportional to

T =
(

a − b cot θ

R4
+ b csc θ

r4

)

where a and b are as in Figure 29. Show that the total resistance is mini-
mized when cos θ = (r/R)4.

B

A

R

r
b

a

FIGURE 29
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In Exercises 58–59, a box (with no top) is to be constructed from a piece
of cardboard with sides of length A and B by cutting out squares of length
h from the corners and folding up the sides (Figure 30).

58. Find the value of h that maximizes the volume of the box if A = 15
and B = 24. What are the dimensions of this box?

59. Which values of A and B maximize the volume of the box if h = 10
cm and AB = 900 cm2?

h

A

B

FIGURE 30

60. Which value of h maximizes the volume of the box if A = B?

61. Given n numbers x1, . . . , xn , find the value of x minimizing the sum
of the squares:

(x − x1)2 + (x − x2)2 + · · · + (x − xn)2

First, solve for n = 2, 3 and then try it for arbitrary n.

62. A billboard of height b is mounted on the side of a building with its
bottom edge at a distance h from the street as in Figure 31. At what dis-
tance x should an observer stand from the wall to maximize the angle of
observation θ?

63. Solve Exercise 62 again using geometry rather than calculus. There
is a unique circle passing through points B and C that is tangent to the
street. Let R be the point of tangency. Note that the two angles labeled ψ
in Figure 31 are equal because they subtend equal arcs on the circle.
(a) Show that the maximum value of θ is θ = ψ . Hint: Show that
ψ = θ + � P B A, where A is the intersection of the circle with PC .
(b) Prove that this agrees with the answer to Exercise 62.
(c) Show that � Q R B = � RC Q for the maximal angle ψ .

h

b

x

P

P

A

R

B

C

Q

FIGURE 31

64. Optimal Delivery Schedule A gas station sells Q gallons of gaso-
line per year, which is delivered N times per year in equal shipments of
Q/N gallons. The cost of each delivery is d dollars and the yearly stor-
age costs are s QT , where T is the length of time (a fraction of a year)
between shipments and s is a constant. Show that costs are minimized for
N = √

s Q/d . (Hint: T = 1/N .) Find the optimal number of deliveries if
Q = 2 million gal, d = $8000, and s = 30 cents/gal-year. Your answer
should be a whole number, so compare costs for the two integer values of
N nearest the optimal value.

65. Victor Klee’s Endpoint Maximum Problem Given 40 m of straight
fence, your goal is to build a rectangular enclosure using 80 additional me-
ters of fence that encompasses the greatest area. Let A(x) be the area of the
enclosure, with x as in Figure 32.

(a) Find the maximum value of A(x).

(b) Which interval of x values is relevant to our problem? Find the maxi-
mum value of A(x) on this interval.

40

20 2 x

40 1 x

20 2 x

x

FIGURE 32

66. Let (a, b) be a fixed point in the first quadrant and let S(d) be the sum
of the distances from (d, 0) to the points (0, 0), (a, b), and (a, −b).

(a) Find the value of d for which S(d) is minimal. The answer depends
on whether b <

√
3a or b ≥ √

3a. Hint: Show that d = 0 when b ≥ √
3a.

(b) GU Let a = 1. Plot S for b = 0.5,
√

3, 3 and describe the position
of the minimum.

67. The force F (in Newtons) required to move a box of mass m kg in
motion by pulling on an attached rope (Figure 33) is

F(θ ) = f mg

cos θ + f sin θ

where θ is the angle between the rope and the horizontal, f is the coeffi-
cient of static friction, and g = 9.8 m/s2. Find the angle θ that minimizes
the required force F , assuming f = 0.4. Hint: Find the maximum value of
cos θ + f sin θ .

F

FIGURE 33

68. In the setting of Exercise 67, show that for any f the minimal force
required is proportional to 1/

√

1 + f 2.

69. Bird Migration Ornithologists have found that the power (in joules
per second) consumed by a certain pigeon flying at velocity v m/s is de-
scribed well by the function P(v) = 17v−1 + 10−3v3 joules/s. Assume
that the pigeon can store 5 × 104 joules of usable energy as body fat.

(a) Show that at velocity v, a pigeon can fly a total distance of D(v) =
(5 × 104)v/P(v) if it uses all of its stored energy.

(b) Find the velocity vp that minimizes P .
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(c) Migrating birds are smart enough to fly at the velocity that maximizes
distance traveled rather than minimizes power consumption. Show that
the velocity vd which maximizes D(v) satisfies P ′(vd ) = P(vd )/vd . Show
that vd is obtained graphically as the velocity coordinate of the point where
a line through the origin is tangent to the graph of P (Figure 34).
(d) Find vd and the maximum distance D(vd ).

10 155

Velocity (m/s)

Minimum power
consumption

Maximum
distance
traveled

Power ( joules /s)

4

FIGURE 34

70. The problem is to put a “roof” of side s on an attic room of height h
and width b. Find the smallest length s for which this is possible if b = 27
and h = 8 (Figure 35).

71. Redo Exercise 70 for arbitrary b and h.

s

h

b

FIGURE 35

a

b

FIGURE 36

72. Find the maximum length of a pole that can be carried horizontally
around a corner joining corridors of widths a = 24 and b = 3 (Figure 36).

73. Redo Exercise 72 for arbitrary widths a and b.

74. Find the minimum length � of a beam that can clear a fence of height
h and touch a wall located b ft behind the fence (Figure 37).

b x

h

FIGURE 37

75. A basketball player stands d feet from the basket. Let h and α
be as in Figure 38. Using physics, one can show that if the player releases
the ball at an angle θ , then the initial velocity required to make the ball go
through the basket satisfies

v2 = 16d

cos2 θ (tan θ − tanα)

(a) Explain why this formula is meaningful only for α < θ < π
2 . Why

does v approach infinity at the endpoints of this interval?

(b) GU Take α = π
6 and plot v2 as a function of θ for π

6 < θ < π
2 .

Verify that the minimum occurs at θ = π
3 .

(c) Set F(θ ) = cos2 θ (tan θ − tanα). Explain why v is minimized for θ
such that F(θ ) is maximized.

(d) Verify that F ′(θ ) = cos(α − 2θ ) secα (you will need to use the addi-
tion formula for cosine) and show that the maximum value of F on

[

α, π2
]

occurs at θ0 = α
2 + π

4 .

(e) For a given α, the optimal angle for shooting the basket is θ0 because
it minimizes v2 and therefore minimizes the energy required to make the
shot (energy is proportional to v2). Show that the velocity vopt at the opti-
mal angle θ0 satisfies

v2
opt = 32d cosα

1 − sinα
= 32 d2

−h + √
d2 + h2

(f) GU Show with a graph that for fixed d (say, d = 15 ft, the distance
of a free throw), v2

opt is an increasing function of h. Use this to explain
why taller players have an advantage and why it can help to jump while
shooting.

h

d

FIGURE 38

76. Three towns A, B, and C are to be joined by an underground fiber
cable as illustrated in Figure 39(A). Assume that C is located directly be-
low the midpoint of AB. Find the junction point P that minimizes the total
amount of cable used.

(a) First show that P must lie directly above C . Hint: Use the result of Ex-
ample 7 to show that if the junction is placed at point Q in Figure 39(B),
then we can reduce the cable length by moving Q horizontally over to the
point P lying above C .

(b) With x as in Figure 39(A), let f (x) be the total length of cable used.
Show that f has a unique critical point c. Compute c and show that
0 ≤ c ≤ L if and only if D ≤ 2

√
3 L .

(c) Find the minimum of f on [0, L] in two cases: D = 2, L = 4 and
D = 8, L = 2.

D

PCable

(A)

L

x x

C

A B

(B)

PQ

C

A B

FIGURE 39
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Further Insights and Challenges
77. Tom and Ali drive along a highway represented by the graph of f in
Figure 40. During the trip, Ali views a billboard represented by the seg-
ment BC along the y-axis. Let Q be the y-intercept of the tangent line to
y = f (x). Show that θ is maximized at the value of x for which the angles
� Q P B and � QC P are equal. This generalizes Exercise 63 (c) [which cor-
responds to the case f (x) = 0]. Hints:

(a) Show that dθ/dx is equal to

(b − c) · (x2 + (x f ′(x))2) − (b − ( f (x) − x f ′(x)))(c − ( f (x) − x f ′(x)))

(x2 + (b − f (x))2)(x2 + (c − f (x))2)

(b) Show that the y-coordinate of Q is f (x) − x f ′(x).

(c) Show that the condition dθ/dx = 0 is equivalent to

P Q2 = B Q · C Q

(d) Conclude that �QPB and �QCP are similar triangles.

x
x

y

Billboard

Highway

P 5 (x, f (x))

y 5 f (x)
B 5 (0, b)

C 5 (0, c)

Q

FIGURE 40

Seismic Prospecting Exercises 78–80 are concerned with determining
the thickness d of a layer of soil that lies on top of a rock formation. Ge-
ologists send two sound pulses from point A to point D separated by a
distance s. The first pulse travels directly from A to D along the surface of
the earth. The second pulse travels down to the rock formation, then along
its surface, and then back up to D (path ABCD), as in Figure 41. The pulse
travels with velocity v1 in the soil and v2 in the rock.

78. (a) Show that the time required for the first pulse to travel from A to
D is t1 = s/v1.

(b) Show that the time required for the second pulse is

t2 = 2d

v1
sec θ + s − 2d tan θ

v2

provided that

tan θ ≤ s

2d
3

(Note: If this inequality is not satisfied, then point B does not lie to the left
of C .)

(c) Show that t2 is minimized when sin θ = v1/v2.

79. In this exercise, assume that v2/v1 ≥
√

1 + 4(d/s)2.

(a) Show that inequality (3) holds if sin θ = v1/v2.

(b) Show that the minimal time for the second pulse is

t2 = 2d

v1
(1 − k2)1/2 + s

v2

where k = v1/v2.

(c) Conclude that
t2
t1

= 2d(1 − k2)1/2

s
+ k.

80. Continue with the assumption of the previous exercise.

(a) Find the thickness of the soil layer, assuming that v1 = 0.7v2,
t2/t1 = 1.3, and s = 400 m.
(b) The times t1 and t2 are measured experimentally. The equation in Ex-
ercise 79(c) shows that t2/t1 is a linear function of 1/s. What might you
conclude if experiments were formed for several values of s and the points
(1/s, t2/t1) did not lie on a straight line?

A

B C

s D

Soil

Rock

d

FIGURE 41

81. In this exercise, we use Figure 42 to prove Heron’s principle of
Example 7 without calculus. By definition, C is the reflection of B across
the line M N (so that BC is perpendicular to M N and B N = C N ). Let P
be the intersection of AC and M N . Use geometry to justify the following:

(a) �P N B and �P NC are congruent and θ1 = θ2.
(b) The paths AP B and APC have equal length.
(c) Similarly, AQ B and AQC have equal length.
(d) The path APC is shorter than AQC for all Q �= P .

Conclude that the shortest path AQ B occurs for Q = P .

A
B

h1 h2

P

h2

Q

C

M N

1

1

2

FIGURE 42

82. A jewelry designer plans to incorporate a component made of gold
in the shape of a frustum of a cone of height 1 cm and fixed lower
radius r (Figure 43). The upper radius x can take on any value between
0 and r . Note that x = 0 and x = r correspond to a cone and cylinder, re-
spectively. As a function of x , the surface area (not including the top and
bottom) is S(x) = πs(r + x), where s is the slant height as indicated in the
figure. Which value of x yields the least expensive design [the minimum
value of S(x) for 0 ≤ x ≤ r ]?

(a) Show that S(x) = π (r + x)
√

1 + (r − x)2.
(b) Show that if r <

√
2, then S is an increasing function. Conclude that

the cone (x = 0) has minimal area in this case.
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(c) Assume that r >
√

2. Show that S has two critical points x1 < x2 in
(0, r ), and that S(x1) is a local maximum, and S(x2) is a local minimum.

(d) Conclude that the minimum occurs at x = 0 or x2.

(e) Find the minimum in the cases r = 1.5 and r = 2.

(f) Challenge: Let c =
√

(5 + 3
√

3)/4 ≈ 1.597. Prove that the minimum

occurs at x = 0 (cone) if
√

2 < r < c, but the minimum occurs at x = x2
if r > c.

s

r

x

1 cm

FIGURE 43 Frustum of height 1 cm.

4.8 Newton’s Method

Newton’s Method is a procedure for finding numerical approximations to zeros of func-
tions. Numerical approximations are important because it is often impossible to find the

REMINDER A “zero” or “root” of a
function f is a solution of the equation
f (x) = 0. zeros exactly. For example, the polynomial f (x) = x5 − x − 1 has one real root c (see

Figure 1), but we can prove, using an advanced branch of mathematics called Galois

21−2

1

−1

x
c

y

FIGURE 1 Graph of y = x5 − x − 1. With
Newton’s Method, we can approximate the
root c as accurately as we like.

Theory, that there is no algebraic formula for this root. In this section, using Newton’s
Method, we show that c ≈ 1.1673, and we show that we can compute c to any desired
degree of accuracy with enough computation.

In Newton’s Method, we begin by choosing a number x0, which we believe is close
to a root of the equation f (x) = 0. This starting value x0 is called the initial guess. New-
ton’s Method then produces a sequence x0, x1, x2, x3 . . . of successive approximations
that, in favorable situations, converge to a root.

Figure 2 illustrates the procedure. Given an initial guess x0, we draw the tangent
line to the graph at (x0, f (x0)). The approximation x1 is defined as the x-coordinate of
the point where the tangent line intersects the x-axis. To produce the second approxima-
tion x2 (also called the second iterate), we apply this procedure to x1. Then, repeatedly
applying this procedure, we produce the sequence of approximations x0, x1, x2, x3 . . . .

First iteration

x0x1

Second iteration

x0x1x2
xx

yy

DF FIGURE 2 The sequence produced by
iteration converges to a root.

Let’s derive a formula for x1. The tangent line at (x0, f (x0)) has equation

y = f (x0) + f ′(x0)(x − x0)

The tangent line crosses the x-axis at x1, where y = 0, that is, where

f (x0) + f ′(x0)(x1 − x0) = 0

To solve for x1, we first divide by f ′(x0) (as long as it is not zero) to obtain
x1 − x0 = − f (x0)/ f ′(x0), and therefore,

x1 = x0 − f (x0)

f ′(x0)
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The second iterate x2 is obtained by applying this formula to x1 instead of x0:

x2 = x1 − f (x1)

f ′(x1)

and so on. Notice in Figure 2 that x1 is closer to the root than x0 is and that x2 is closer
still. This is typical: The successive approximations usually converge to the actual root.
However, there are cases where Newton’s Method fails (see Figure 4).

Newton’s Method To approximate a root of f (x) = 0:

Step 1. Choose an initial guess x0 (close to the desired root if possible).
Step 2. Generate successive approximations x1, x2, . . . , where

xn+1 = xn − f (xn)

f ′(xn)
1

EXAMPLE 1 Calculate the first five approximations x1, . . . , x5 to a root of f (x) =Newton’s Method is an example of an
iterative procedure. To “iterate” means to
repeat, and in Newton’s Method, we use
Eq. (1) repeatedly to produce the sequence
of approximations.

x5 − x − 1 using the initial guess x0 = 1.

Solution We have f ′(x) = 5x4 − 1. Therefore,

x1 = x0 − f (x0)

f ′(x0)
= x0 − x5

0 − x0 − 1

5x4
0 − 1

We compute the first two approximations as follows:

x1 = x0 − f (x0)

f ′(x0)
= 1 − 15 − 1 − 1

5(1)4 − 1
= 1.25

x2 = x1 − f (x1)

f ′(x1)
= 1.25 − 1.255 − 1.25 − 1

5(1.25)4 − 1
≈ 1.178459

Continuing, rounding to six decimal places at each stage, we obtain x3 ≈ 1.167547,
x4 ≈ 1.167304, and x5 ≈ 1.167304. This suggests that, accurate to six decimal places,
1.167304 is a root of f (x) = x5 − x − 1.

We can check our approximation; evaluating x5 − x − 1 at x = 1.167304, we obtain
0.00000018 (to eight decimal places), verifying that we have a good approximation to a
root of f (x) = x5 − x − 1.

How Many Iterations Are Required?
How many iterations of Newton’s Method are required to approximate a root to within a
given accuracy? There is no definitive answer, but in practice, it is usually safe to assume
that if xn and xn+1 agree to m decimal places, then the approximation xn is correct to
these m places.

EXAMPLE 2 GU Let c be the smallest positive solution of sin 3x = cos x .

(a) Use a computer-generated graph to choose an initial guess x0 for c.
(b) Use Newton’s Method to approximate c to within an error of at most 10−6.

Solution

(a) A solution of sin 3x = cos x is a zero of the function f (x) = sin 3x − cos x . Figure 3

24

1

21

x

y

FIGURE 3 Graph of f (x) = sin 3x − cos x .
shows that the smallest positive zero is approximately halfway between 0 and π

4 . Because
π
4 ≈ 0.785, a good initial guess is x0 = 0.4.
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(b) Since f ′(x) = 3 cos 3x + sin x , Eq. (1) yields the formula

xn+1 = xn − sin 3xn − cos xn

3 cos 3xn + sin xn

With x0 = 0.4 as the initial guess, the first four iterates areThere is no single “correct” initial guess. In
Example 2, we chose x0 = 0.4, but
another possible choice is x0 = 0, leading
to the sequence

x1 ≈ 0.3333333333

x2 ≈ 0.3864547725

x3 ≈ 0.3926082513

x4 ≈ 0.3926990816

You can check, however, that x0 = 1 yields
a sequence converging to π

4 , which is the
second positive solution of sin 3x = cos x .

x1 ≈ 0.3925647447

x2 ≈ 0.3926990382

x3 ≈ 0.3926990816987196

x4 ≈ 0.3926990816987241

Stopping here, we can be fairly confident that x4 approximates the smallest positive root
c to at least 12 places. In fact, c = π

8 and x4 is accurate to 16 places.

Which Root Does Newton’s Method Compute?
Sometimes, Newton’s Method computes no root at all. In Figure 4, the iterates diverge

Zero of f

x0 x1 x2
x

y

DF FIGURE 4 Function has only one zero
but the sequence of Newton iterates goes
off to infinity.

to infinity. In practice, however, Newton’s Method usually converges quickly, and if a
particular choice of x0 does not lead to a root, the best strategy is to try a different initial
guess, consulting a graph if possible. If f (x) = 0 has more than one root, different initial
guesses x0 may lead to different roots.

EXAMPLE 3 Figure 5 shows that f (x) = x4 − 6x2 + x + 5 has four real roots.

(a) Show that with x0 = 0, Newton’s Method converges to the root near −2.

(b) Show that with x0 = −1, Newton’s Method converges to the root near −1.

Solution We have f ′(x) = 4x3 − 12x + 1 and

32123

22 21
x

y

FIGURE 5 Graph of
f (x) = x4 − 6x2 + x + 5.

xn+1 = xn − x4
n − 6x2

n + xn + 5

4x3
n − 12xn + 1

= 3x4
n − 6x2

n − 5

4x3
n − 12xn + 1

(a) On the basis of Table 1, we can be confident that when x0 = 0, Newton’s Method
converges to a root near −2.3. Notice in Figure 5 that this is not the closest root to x0.

(b) Table 2 suggests that with x0 = −1, Newton’s Method converges to the root
near −0.9.

TABLE 1

x0 0
x1 −5
x2 −3.9179954
x3 −3.1669480
x4 −2.6871270
x5 −2.4363303
x6 −2.3572979
x7 −2.3495000

TABLE 2

x0 −1
x1 −0.8888888888
x2 −0.8882866140
x3 −0.88828656234358
x4 −0.888286562343575

EXAMPLE 4 Approximating
√

5 We know that the solutions to x2 − 5 = 0 are x =
±√

5. We can use Newton’s method to obtain approximations to these values. Approxi-
mate

√
5 using an initial guess x0 = 2.

Solution We have f ′(x) = 2x . Therefore,

x1 = x0 − f (x0)

f ′(x0)
= x0 − x2

0 − 5

2x0
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We compute the successive approximations as follows:

x1 = x0 − f (x0)

f ′(x0)
= 2 − 22 − 5

2 · 2
= 2.25

x2 = x1 − f (x1)

f ′(x1)
= 2.25 − 2.252 − 5

2 · 2.25
≈ 2.23611

x3 = x2 − f (x2)

f ′(x2)
= 2.23611 − 2.236112 − 5

2 · 2.23611
≈ 2.23606797789

Therefore,
√

5 ≈ 2.23606797789.

A calculator computation of
√

5 yields
√

5 = 2.23606797750 . . .

Observe that x3 is accurate to within an error of less than 10−9. This is impressive accu-
racy for just three iterations of Newton’s Method.

4.8 SUMMARY
• Newton’s Method: To find a sequence of numerical approximations to a root of f ,
begin with an initial guess x0. Then construct the sequence x0, x1, x2, . . . using the
formula

xn+1 = xn − f (xn)

f ′(xn)

You should choose the initial guess x0 as close as possible to a root, possibly by
referring to a graph. In favorable cases, the sequence converges rapidly to a root.

• If xn and xn+1 agree to m decimal places, it is usually safe to assume that xn agrees
with a root to m decimal places.

4.8 EXERCISES

Preliminary Questions
1. How many iterations of Newton’s Method are required to compute a
root if f is a linear function?

2. What happens in Newton’s Method if your initial guess happens to be
a zero of f ?

3. What happens in Newton’s Method if your initial guess happens to be
a local min or max of f ?

4. Is the following a reasonable description of Newton’s Method: “A
root of the equation of the tangent line to the graph of f is used as an
approximation to a root of f itself”? Explain.

Exercises
In this exercise set, all approximations should be carried out using New-
ton’s Method.

In Exercises 1–6, apply Newton’s Method to f and initial guess x0 to cal-
culate x1, x2, x3.

1. f (x) = x2 − 6, x0 = 2

2. f (x) = x2 − 3x + 1, x0 = 3

3. f (x) = x3 − 10, x0 = 2

4. f (x) = x3 + x + 1, x0 = −1

5. f (x) = cos x − 4x , x0 = 1

6. f (x) = 1 − x sin x , x0 = 7

7. Use Figure 6 to choose an initial guess x0 to the unique real root of
x3 + 2x + 5 = 0 and compute the first three Newton iterates.

2122 21
x

y

FIGURE 6 Graph of y = x3 + 2x + 5.
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8. Approximate a solution of sin x = cos 2x in the interval
[

0, π2
]

to three
decimal places. Then find the exact solution and compare with your ap-
proximation.

9. Approximate both solutions of ex = 5x to three decimal places
(Figure 7).

321
x

y

10

20
y = ex

y = 5x

FIGURE 7 Graphs of y = ex and y = 5x .

10. The first positive solution of sin x = 0 is x = π . Use Newton’s
Method to calculate π to four decimal places.

In Exercises 11–14, approximate to three decimal places using Newton’s
Method and compare with the value from a calculator.

11.
√

11 12. 51/3 13. 27/3 14. 3−1/4

15. Approximate the largest positive root of f (x) = x4 − 6x2 + x + 5 to
within an error of at most 10−4. Refer to Figure 5.

GU In Exercises 16–21, approximate the value specified to three deci-
mal places using Newton’s Method. Use a plot to choose an initial guess.

16. Largest positive root of f (x) = x3 − 5x + 1

17. Negative root of f (x) = x5 − 20x + 10

18. Positive solution of sin θ = 0.8θ

19. Positive solution of 2 tan−1 x = x

20. The least positive solution of x cos x = 10

21. Solution of ln(x + 4) = x

22. Let x1, x2 be the estimates to a root obtained by applying Newton’s
Method with x0 = 1 to the function graphed in Figure 8. Estimate the nu-
merical values of x1 and x2, and draw the tangent lines used to obtain
them.

31 221
x

y

FIGURE 8

23. GU Find the smallest positive value of x at which y = x and
y = tan x intersect. Hint: Draw a plot.

24. In 1535, the mathematician Antonio Fior challenged his rival Niccolo
Tartaglia to solve this problem: A tree stands 12 braccia high; it is broken
into two parts at such a point that the height of the part left standing is
the cube root of the length of the part cut away. What is the height of the
part left standing? Show that this is equivalent to solving x3 + x = 12 and
finding the height to three decimal places. Tartaglia, who had discovered

the secret of solving the cubic equation, was able to determine the exact
answer:

x =
(

3
√√

2919 + 54 − 3
√√

2919 − 54
)

3
√

9

25. Find (to two decimal places) the coordinates of the point P in Figure 9
where the tangent line to y = cos x passes through the origin.

P

y 5 cos x
1

x

y

FIGURE 9

Newton’s Method is often used to determine interest rates in financial cal-
culations. In Exercises 26–28, r denotes a yearly interest rate expressed
as a decimal (rather than as a percent).

26. If P dollars are deposited every month in an account earning interest
at the yearly rate r , then the value S of the account after N years is

S = P

(
b12N+1 − b

b − 1

)

, where b = 1 + r

12

You have decided to deposit P = $100 per month.

(a) Determine S after 5 years if r = 0.07 (i.e., 7%).

(b) Show that to save $10,000 after 5 years, you must earn interest at a
rate r determined by the equation b61 − 101b + 100 = 0. Use Newton’s
Method to solve for b. Then find r . Note that b = 1 is a root, but you want
the root satisfying b > 1.

27. If you borrow L dollars for N years at a yearly interest rate r , your
monthly payment of P dollars is calculated using the equation

L = P

(
1 − b−12N

b − 1

)

, where b = 1 + r

12

(a) Find P if L = $5000, N = 3, and r = 0.08 (8%).

(b) You are offered a loan of L = $5000 to be paid back over 3 years with
monthly payments of P = $200. Use Newton’s Method to compute b and
find the implied interest rate r of this loan. Hint: Show that

(L/P)b12N+1 − (1 + L/P)b12N + 1 = 0

28. If you deposit P dollars in a retirement fund every year for N years
with the intention of then withdrawing Q dollars per year for M years, you
must earn interest at a rate r satisfying

P(bN − 1) = Q(1 − b−M ), where b = 1 + r

Assume that $2000 is deposited each year for 30 years and the goal is to
withdraw $10,000 per year for 25 years. Use Newton’s Method to compute
b and then find r . Note that b = 1 is a root, but you want the root satisfying
b > 1.

29. There is no simple formula for the position at time t of a planet P in
its orbit (an ellipse) around the sun. Introduce the auxiliary circle and angle
θ in Figure 10 (note that P determines θ because it is the central angle of
point B on the circle). Let a = O A and e = O S/O A (the eccentricity of
the orbit).

(a) Show that sector BSA has area (a2/2)(θ − e sin θ ).
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(b) By Kepler’s Second Law, the area of sector BSA is proportional to the
time t elapsed since the planet passed point A, and because the circle has
area πa2, BSA has area (πa2)(t/T ), where T is the period of the orbit.
Deduce Kepler’s Equation:

2π t

T
= θ − e sin θ

(c) The eccentricity of Mercury’s orbit is approximately e = 0.2. Use
Newton’s Method to find θ after a quarter of Mercury’s year has elapsed
(t = T/4). Convert θ to degrees. Has Mercury covered more than a quarter
of its orbit at t = T/4?

O

P

A
S

Auxiliary circle

Elliptical orbit

Sun

B

FIGURE 10

30. The roots of f (x) = 1
3 x3 − 4x + 1 to three decimal places are

−3.583, 0.251, and 3.332 (Figure 11). Determine the root to which New-
ton’s Method converges for the initial choices x0 = 1.85, 1.7, and 1.55.
The answer shows that a small change in x0 can have a significant effect
on the outcome of Newton’s Method.

0.251

4

24

23.583

3.332
x

y

FIGURE 11 Graph of f (x) = 1
3 x3 − 4x + 1.

31. Let f (x) = xe−x .

(a) Show that a sequence obtained by applying Newton’s Method to f

satisfies xn+1 = x2
n

xn−1 .

(b) CAS Compute x1, x2, . . . , x10 separately with x0 = 0.8 and x0 = 5.
Discuss what appears to be happening in each case. (Note: the only root of
f is at x = 0.)

32. Let f (x) = xe2x .

(a) Show that a sequence obtained by applying Newton’s Method to f

satisfies xn+1 = 2x2
n

2xn+1 .

(b) CAS Compute x1, x2, . . . , x10 separately with x0 = −3 and x0 = 7.
Discuss what appears to be happening in each case. (Note: the only root of
f is at x = 0.)

33. What happens when you apply Newton’s Method to find a zero of
f (x) = x1/3? Note that x = 0 is the only zero.

34. What happens when you apply Newton’s Method to the equation
x3 − 20x = 0 with the unlucky initial guess x0 = 2?

Further Insights and Challenges
35. Newton’s Method can be used to compute reciprocals without per-
forming division. Let c > 0 and set f (x) = x−1 − c.

(a) Show that x − ( f (x)/ f ′(x)) = 2x − cx2.

(b) Calculate the first three iterates of Newton’s Method with c = 10.3
and the two initial guesses x0 = 0.1 and x0 = 0.5.

(c) Explain graphically why x0 = 0.5 does not yield a sequence converg-
ing to 1/10.3.

In Exercises 36 and 37, consider a metal rod of length L fastened at both
ends. If you cut the rod and weld on an additional segment of length m,
leaving the ends fixed, the rod will bow up into a circular arc of radius R
(unknown), as indicated in Figure 12.

R

h

L

FIGURE 12 The bold circular arc has length L + m.

36. Let h be the maximum vertical displacement of the rod.

(a) Show that L = 2R sin θ and conclude that

h = L(1 − cos θ )

2 sin θ

(b) Show that L + m = 2Rθ and then prove

sin θ

θ
= L

L + m
2

37. Let L = 3 and m = 1. Apply Newton’s Method to Eq. (2) to estimate
θ , and use this to estimate h.

38. Quadratic Convergence to Square Roots Let f (x) = x2 − c and
let en = xn − √

c be the error in xn .

(a) Show that xn+1 = 1
2 (xn + c/xn) and en+1 = e2

n/2xn .

(b) Show that if x0 >
√

c, then xn >
√

c for all n. Explain graphically.

(c) Show that if x0 >
√

c, then en+1 ≤ e2
n/(2

√
c).

In Exercises 39–41, a flexible chain of length L is suspended between two
poles of equal height separated by a distance 2M (Figure 13). By New-
ton’s laws, the chain describes a catenary y = a cosh( x

a ) where a is the

number such that L = 2a sinh( M
a ). The sag s is the vertical distance from

the highest to the lowest point on the chain.
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39. Suppose that L = 120 and M = 50.

(a) Use Newton’s Method to find a value of a (to two decimal places)
satisfying L = 2a sinh(M/a).

(b) Compute the sag s.

40. Assume that M is fixed.

(a) Calculate ds
da . Note that s = a cosh

( M
a

) − a.

(b) Calculate da
d L by implicit differentiation using the relation

L = 2a sinh
( M

a

)

.

(c) Use (a) and (b) and the Chain Rule to show that

ds

d L
= ds

da

da

d L
= cosh(M/a) − (M/a) sinh(M/a) − 1

2 sinh(M/a) − (2M/a) cosh(M/a)
3

41. Suppose that L = 160 and M = 50.

(a) Use Newton’s Method to find a value of a (to two decimal places)
satisfying L = 2a sinh(M/a).

(b) Use Eq. (3) and the Linear Approximation to estimate the increase in
sag �s for changes in length �L = 1 and �L = 5.

(c) CAS Compute s(161) − s(160) and s(165) − s(160) directly and
compare with your estimates in (b).

y 5 a cosh(x/a)

2 M

s

x

y

FIGURE 13 Chain hanging between two poles.

CHAPTER REVIEW EXERCISES

In Exercises 1–6, estimate using the Linear Approximation or lin-
earization, and use a calculator to estimate the error.

1. 8.11/3 − 2 2.
1√
4.1

− 1

2

3. 6251/4 − 6241/4 4.
√

101

5.
1

1.02
6. 5√33

In Exercises 7–12, find the linearization at the point indicated.

7. y = √
x , a = 25 8. v(t) = 32t − 4t2, a = 2

9. A(r ) = 4
3πr3, a = 3

10. V (h) = 4h(2 − h)(4 − 2h), a = 1

11. P(x) = e−x2/2, a = 1 12. f (x) = ln(x + e), a = e

In Exercises 13–16, use the Linear Approximation.

13. The position of an object in linear motion at time t is s(t) =
0.4t2 + (t + 1)−1. Estimate the distance traveled over the time inter-
val [4, 4.2].

14. A bond that pays $10,000 in 6 years is offered for sale at a price
P . The percentage yield Y of the bond is

Y = 100

((
10,000

P

)1/6
− 1

)

Verify that if P = $7500, then Y = 4.91%. Estimate the drop in yield
if the price rises to $7700.

15. When a bus pass from Albuquerque to Los Alamos is priced
at p dollars, a bus company takes in a monthly revenue of R(p) =
1.5p − 0.01p2 (in thousands of dollars).

(a) Estimate �R if the price rises from $50 to $53.

(b) If p = 80, how will revenue be affected by a small increase in
price? Explain using the Linear Approximation.

16. Show that
√

a2 + b ≈ a + b
2a if b is small. Use this to estimate√

26 and find the error using a calculator.

17. Use the IntermediateValue Theorem to show that sin x− cos x=3x
has a solution, and use Rolle’s Theorem to show that this solution is
unique.

18. Show that f (x) = 2x3 + 2x + sin x + 1 has precisely one real
root.

19. Verify the MVT for f (x) = ln x on [1, 4].

20. Suppose that f (1) = 5 and f ′(x) ≥ 2 for x ≥ 1. Use the MVT to
show that f (8) ≥ 19.

21. Use the MVT to prove that if f ′(x) ≤ 2 for x > 0 and f (0) = 4,
then f (x) ≤ 2x + 4 for all x ≥ 0.

22. A function f has derivative f ′(x) = 1

x4 + 1
. Where on the inter-

val [1, 4] does f take on its maximum value?

In Exercises 23–28, find the critical points and determine whether they
are minima, maxima, or neither.

23. f (x) = x3 − 4x2 + 4x 24. s(t) = t4 − 8t2

25. f (x) = x2(x + 2)3 26. f (x) = x2/3(1 − x)

27. g(θ ) = sin2 θ + θ 28. h(θ ) = 2 cos 2θ + cos 4θ

In Exercises 29–36, find the extreme values on the interval.

29. f (x) = x(10 − x), [−1, 3]

30. f (x) = 6x4 − 4x6, [−2, 2]

31. g(θ ) = sin2 θ − cos θ , [0, 2π ]

32. R(t) = t

t2 + t + 1
, [0, 3]
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33. f (x) = x2/3 − 2x1/3, [−1, 3]

34. f (x) = 4x − tan2 x ,
[−π

4 , π3
]

35. f (x) = x − 12 ln x , [5, 40]

36. f (x) = ex − 20x − 1, [0, 5]

37. Find the critical points and extreme values of
f (x) = |x − 1| + |2x − 6| in [0, 8].

38. Match the description of f with the graph of its derivative f ′ in
Figure 1.

(a) f is increasing and concave up.
(b) f is decreasing and concave up.
(c) f is increasing and concave down.

y y y

x

x x

(ii) (iii)(i)

FIGURE 1 Graphs of the derivative.

In Exercises 39–44, find the points of inflection.

39. y = x3 − 4x2 + 4x 40. y = x − 2 cos x

41. y = x2

x2 + 4
42. y = x

(x2 − 4)1/3

43. f (x) = (x2 − x)e−x 44. f (x) = x(ln x)2

In Exercises 45–54, sketch the graph, noting the transition points and
asymptotic behavior.

45. y = 12x − 3x2 46. y = 8x2 − x4

47. y = x3 − 2x2 + 3 48. y = 4x − x3/2

49. y = x

x3 + 1
50. y = x

(x2 − 4)2/3

51. y = 1

|x + 2| + 1
52. y =

√

2 − x3

53. y =
√

3 sin x − cos x on [0, 2π ]

54. y = 2x − tan x on [0, 2π ]

55. Draw a curve y = f (x) for which f ′ and f ′′ have signs as indi-
cated in Figure 2.

x
22 0 1 3 5

− + − + + + + −− −

FIGURE 2

56. Find the dimensions of a cylindrical can with a bottom but no top
of volume 4 m3 that uses the least amount of metal.

57. A rectangular open-topped box of height h with a square base of

side b has volume V = 4 m3. Two of the side faces are made of ma-
terial costing $40/m2. The remaining sides cost $20/m2. Which values
of b and h minimize the cost of the box?

58. The corn yield on a certain farm is

Y = −0.118x2 + 8.5x + 12.9 (bushels per acre)

where x is the number of corn plants per acre (in thousands). Assume
that corn seed costs $1.25 (per thousand seeds) and that corn can be
sold for $1.50/bushel. Let P(x) be the profit (revenue minus the cost
of seeds) at planting level x .

(a) Compute P(x0) for the value x0 that maximizes yield Y .
(b) Find the maximum value of P(x). Does maximum yield lead to
maximum profit?

59. Let N (t) be the size of a tumor (in units of 106 cells) at time t (in
days). According to the Gompertz Model, d N/dt = N (a − b ln N ),
where a, b are positive constants. Show that the maximum value of N
is ea/b and that the tumor increases most rapidly when N = ea/b−1.

60. A truck gets 10 miles per gallon (mpg) of diesel fuel traveling
along an interstate highway at 50 mph. This mileage decreases by
0.15 mpg for each mile per hour increase above 50 mph.

(a) If the truck driver is paid $30/h and diesel fuel costs P = $3/gal,
which speed v between 50 and 70 mph will minimize the cost of a trip
along the highway? Notice that the actual cost depends on the length
of the trip, but the optimal speed does not.

(b) GU Plot cost as a function of v (choose the length arbitrarily)
and verify your answer to part (a).

(c) GU Do you expect the optimal speed v to increase or decrease if
fuel costs go down to P = $2/gal? Plot the graphs of cost as a function
of v for P = 2 and P = 3 on the same axis and verify your conclusion.

61. Find the maximum volume of a right-circular cone placed upside-
down in a right-circular cone of radius R = 3 and height H = 4 as in

Figure 3. A cone of radius r and height h has volume 1
3πr2h.

62. Redo Exercise 61 for arbitrary R and H .

R

H

FIGURE 3

63. Show that the maximum area of a parallelogram ADE F that is
inscribed in a triangle ABC , as in Figure 4, is equal to one-half the
area of �ABC .

D E

B

F CA

FIGURE 4
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64. A box of volume 8 m3 with a square top and bottom is constructed
out of two types of metal. The metal for the top and bottom costs
$50/m2 and the metal for the sides costs $30/m2. Find the dimensions
of the box that minimize total cost.

65. Let f be a function whose graph does not pass through the x-axis
and let Q = (a, 0). Let P = (x0, f (x0)) be the point on the graph clos-
est to Q (Figure 5). Prove that P Q is perpendicular to the tangent line
to the graph of x0. Hint: Find the minimum value of the square of the
distance from (x , f (x)) to (a, 0).

y

x

y 5 f (x)

P 5 (x0, f (x0))

Q 5 (a, 0)

FIGURE 5

66. Take a circular piece of paper of radius R, remove a sector of
angle θ (Figure 6), and fold the remaining piece into a cone-shaped
cup. Which angle θ produces the cup of largest volume?

R

FIGURE 6

67. Use Newton’s Method to estimate 3√25 to four decimal places.

68. Use Newton’s Method to find a root of f (x) = x2 − x − 1 to four
decimal places.

69. Find the local extrema of f (x) = e2x + 1

ex+1
.

70. Find the points of inflection of f (x) = ln(x2 + 1) and, at each
point, determine whether the concavity changes from up to down or
from down to up.

In Exercises 71–74, find the local extrema and points of inflection,
and sketch the graph. Use L’Hôpital’s Rule to determine the limits as
x → 0+ or x → ±∞ if necessary.

71. y = x ln x (x > 0) 72. y = ex−x2

73. y = x(ln x)2 (x > 0) 74. y = tan−1

(

x2

4

)

75. Explain why L’Hôpital’s Rule gives no information about

lim
x→∞

2x − sin x

3x + cos 2x
. Evaluate the limit by another method.

76. Let f be a differentiable function with inverse g which is also
differentiable. Assume that f (0) = 0 and f ′(0) �= 0.

(a) Use the fact that f (g(x)) = x and the Chain Rule to show that

g′(x) = 1

f ′(g(x))
.

(b) Prove that

lim
x→0

f (x)

g(x)
= f ′(0)2

In Exercises 77–88, verify that L’Hôpital’s Rule applies and evaluate
the limit.

77. lim
x→3

4x − 12

x2 − 5x + 6

78. lim
x→−2

x3 + 2x2 − x − 2

x4 + 2x3 − 4x − 8

79. lim
x→0+ x1/2 ln x 80. lim

t→∞
ln(et + 1)

t

81. lim
θ→0

2 sin θ − sin 2θ

sin θ − θ cos θ
82. lim

x→0

√
4 + x − 2 8√1 + x

x2

83. lim
t→∞

ln(t + 2)

log2 t
84. lim

x→0

(
ex

ex − 1
− 1

x

)

85. lim
y→0

sin−1 y − y

y3
86. lim

x→1

√

1 − x2

cos−1 x

87. lim
x→0

sinh(x2)

cosh x − 1
88. lim

x→0

tanh x − sinh x

sin x − x

89. Let f (x) = e−Ax2/2, where A > 0 is a constant. Given any n
numbers a1, a2, . . . , an , set

�(x) = f (x − a1) f (x − a2) · · · f (x − an)

(a) Assume n = 2 and prove that � attains its maximum value at the
average x = 1

2 (a1 + a2). Hint: Calculate �′(x) using logarithmic dif-
ferentiation.

(b) Show that for any n, � attains its maximum value at

x = 1

n
(a1 + a2 + · · · + an).

This fact is related to the role of f (x) (whose graph is a bell-shaped
curve) in statistics.
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